精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)

如圖甲,在平面四邊形ABCD中,已知
,,現將四邊形ABCD沿BD折起,
使平面ABD平面BDC(如圖乙),設點E、F分別為棱
AC、AD的中點.
(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.


(1)證明:在圖甲中∵ ∴ ,
--------------------------------------------------------------------------------------2分
在圖乙中,∵平面ABD平面BDC , 且平面ABD平面BDC=BD
∴AB⊥底面BDC,∴AB⊥CD.------------------------------------------4分
,∴DC⊥BC,且
∴DC平面ABC. -----------------------------------------------------5分
(2)解法1:∵E、F分別為AC、AD的中點
∴EF//CD,又由(1)知,DC平面ABC,
∴EF⊥平面ABC,垂足為點E
∴∠FBE是BF與平面ABC所成的角-------------------------------------7分
在圖甲中,∵, ∴,
,,-9分
∴在Rt△FEB中,
即BF與平面ABC所成角的正弦值為.---------------------------------10分
解法2:如圖,以B為坐標原點,BD所在的直線為x軸建立空間直角坐標系如下圖示,
 設,則----------------6分
可得,,
,
,-------------8分
設BF與平面ABC所成的角為
由(1)知DC平面ABC

------------------------------------------------------10分
(3)由(2)知 FE⊥平面ABC,
又∵BE平面ABC,AE平面ABC,∴FE⊥BE,FE⊥AE,
∴∠AEB為二面角B-EF-A的平面角----------------------------------------------12分
在△AEB中,

即所求二面角B-EF-A的余弦為.----------------------------14分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分)如圖2,為了綠化城市,擬在矩形區域ABCD內建一個矩形草坪,另外△AEF內部有一文物保護區域不能占用,經過測量AB=100m,BC=80m,AE=30m,AF=20m,應該如何設計才能使草坪面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)

         如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點,F是AB中點,

   (1)求證:

   (2)當E是棱CC1中點時,求證:CF//平面AEB1;

   (3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數學 題型:解答題

(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中點,求證:BE//平面ACF;

(Ⅱ)求直線BE與平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中數學 來源:2011年福建省高二上學期期末考試數學理卷 題型:解答題

(本題滿分14分)如圖,正方形的邊長都是1,平面平面,點上移動,點上移動,若

(I)求的長;

(II)為何值時,的長最;

(III)當的長最小時,求面與面所成銳二面角余弦值的大小.

 

查看答案和解析>>

科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題

(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。

   (1)求證:EF//平面ABC;

   (2)求證:平面平面C1CBB1;

   (3)求異面直線AB與EB1所成的角。

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视