(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F2(1,0),且橢圓C經過點
.
(I)求橢圓C的離心率:
(II)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.
科目:高中數學 來源: 題型:解答題
已知橢圓的四個頂點恰好是一邊長為2,一內角為
的菱形的四個頂點.
(I)求橢圓的方程;
(II)直線與橢圓
交于
,
兩點,且線段
的垂直平分線經過點
,求
(
為原點)面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知曲線,曲線
,P是平面上一點,若存在過點P的直線與
都有公共點,則稱P為“C1—C2型點”.
(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線與
有公共點,求證
,進而證明原點不是“C1—C2型點”;
(3)求證:圓內的點都不是“C1—C2型點”.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,且過點
.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線
與橢圓相交于不同的兩點
,試問在
軸上是否存在點
,使
是與
無關的常數?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,橢圓
的右焦點為
,離心率為
.分別過
,
的兩條弦
,
相交于點
(異于
,
兩點),且
.
(1)求橢圓的方程;
(2)求證:直線,
的斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:與橢圓
共焦點,
(Ⅰ)求的值和拋物線C的準線方程;
(Ⅱ)若P為拋物線C上位于軸下方的一點,直線
是拋物線C在點P處的切線,問是否存在平行于
的直線
與拋物線C交于不同的兩點A,B,且使
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C:(a>0,b>0)的左、右焦點分別為
、
,離心率為3,直線y=2與C的兩個交點間的距離為
.
(Ⅰ)求a,b;
(Ⅱ)設過的直線l與C的左、右兩支分別交于A、B兩點,且
,證明:
、
、
成等比數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com