精英家教網 > 高中數學 > 題目詳情
20、已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區間[-3,3]上的單調性.
分析:(1)通過函數F(x)是奇函數先求出b,在利用函數f(x)在x=-1處取極值可得f′(-1)=0求得c,則函數解析式求得.
(2)先求導數fˊ(x),在區間[-3,3]內解不等式fˊ(x)>0和fˊ(x)<0即可.
解答:解:(1)∵函數F(x)=f(x)-3x2是奇函數,
∴F(-x)=-F(x),化簡計算得b=3.
∵函數f(x)在x=-1處取極值,∴f′(x)=0.
f(x)=-2x3+3x2+cx,f′(x)=-6x2+6x+c
∴f′(-1)=-6-6+c=0,c=12.
∴f(x)=-2x3+3x2+12x,
(2)f′(x)=-6x2+6x+12=-6(x2-x-2).
令f′(x)=0,得x1=-1,x2=2,

∴函數f(x)在[-3,-1]和[2,3]上是減函數,
函數f(x)在[-1,2]上是增函數.
點評:本題考查了待定系數法求解析式,利用導數研究函數的單調性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的函數y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數,
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)是偶函數,對x∈R都有f(2+x)=f(2-x),當f(-3)=-2時,f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數y=f(x+1)的圖象關于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视