【題目】設數列{an}的前n項和為Sn,且Sn=λn2﹣16n+m.
(1)當λ=2時,求通項公式an;
(2)設{an}的各項為正,當m=15時,求λ的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知等差數列和等比數列
的各項均為整數,它們的前
項和分別為
,且
,
.
(1)求數列,
的通項公式;
(2)求;
(3)是否存在正整數,使得
恰好是數列
或
中的項?若存在,求出所有滿足條件的
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
:
(
為參數,
),曲線
:
(
為參數),
與
相切于點
,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點
的極坐標;
(2)已知直線:
與圓
:
交于
,
兩點,記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:1(a>b>0),橢圓上的點到焦點的最小距離為
且過點P(
,1).
(1)求橢圓C的方程;
(2)若過點M(3,0)的直線l與橢圓C有兩個不同的交點P和Q,若點P關于x軸的對稱點為P',判斷直線P'Q是否經過定點,如果經過,求出該定點坐標;如果不經過,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數).以直角坐標系的原點
為極點,
軸的正半軸為極軸建立坐標系,曲線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)若過點的直線
與
交于
,
兩點,與
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com