精英家教網 > 高中數學 > 題目詳情
矩陣與變換二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M;
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
【答案】分析:(1)先設出所求矩陣,利用待定系數法建立一個四元一次方程組,解方程組即可;
(2)在所求的直線上任設一點寫成列向量,求出該點在矩陣M的作用下的點的坐標,代入已知曲線即可.
解答:(本小題滿分7分)
解:(Ⅰ)設,則有 = =,
所以,…(2分)
解得所以M=…(3分)
(Ⅱ)因為且m:2x'-y'=4,…(5分)
所以2(x+2y)-(3x+4y)=4,即x+4=0,這就是直線l的方程                  …(7分)
點評:本題主要考查來了逆矩陣與投影變換,以及直線的一般式方程等基礎知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標系與參數方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數函數;
(Ⅱ)若關于x的不等式f(x)-a≤0有解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

矩陣與變換二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M;
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.

查看答案和解析>>

科目:高中數學 來源:福建省師大附中2012屆高三高考模擬數學理科試題 題型:044

選修4-2:矩陣與變換

二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).

(Ⅰ)求矩陣M的逆矩陣M-1;

(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省泉州市安溪八中高三(上)期中數學試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標系與參數方程
已知直線的極坐標方程為,圓M的參數方程為(其中θ為參數).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數函數;
(Ⅱ)若關于x的不等式f(x)-a≤0有解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省泉州市安溪八中高三(上)期中數學試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標系與參數方程
已知直線的極坐標方程為,圓M的參數方程為(其中θ為參數).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數函數;
(Ⅱ)若關于x的不等式f(x)-a≤0有解,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视