精英家教網 > 高中數學 > 題目詳情

如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點.
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.

(1) 建立空間直角坐標系,然后利用向量的數量積為零來證明垂直。
(2)
(3)不存在,為135°鈍角

解析試題分析:解:(1)如圖以A為原點建立空間直角坐標系

A(0,0,0),B(2,0,0),
C(2,1,0),D(0,2,0)
M(1,,1),N(1,0,1),
E(0,m,2-m),P(0,0,2)
(2,0,-2),(1,-,1)
="0"
(2)=(-2,1,0)平面ADMN法向量=(x,y,z)
=(0,2,0) =(1,0,1)   =(1,0,-1)
設CD與平面ADMN所成角α,則
(3)設平面ACN法向量=(x,y,z) =(1,-2,-1)
平面AEN的法向量=(x,y,z) =(1,,-1)
  , 
    m= PE:ED=(3-4):2  不存在,為135°鈍角
考點:本試題主要是考查了空間中點線面的位置關系的運用。
點評:空間幾何體中的線面角和二面角的求解,以及平行垂直的證明,可以運用幾何法得到,也可以通過合理建立直角坐標系,設點,借助于向量的知識來得到求解和證明。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)在直三棱柱(側棱垂直底面)中,,且異面直線所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題13分)
如圖,在四棱錐中,平面,底面是菱形,.分別是的中點.

(1) 求證:;
(2) 求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長為的正方形, ,且點滿足 .

(1)證明:平面 .
(2)在線段上是否存在點,使得平面?若存在,確定點的位置,若不存在請說明理由 .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點.

(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
如圖所示,四棱錐中,底面為正方形,平面,,分別為、的中點.

(1)求證:;
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示:一吊燈的下圓環直徑為4m,圓心為O,通過細繩懸掛在天花板上,圓環呈水平狀態,并且與天花板的距離(即)為2m,在圓環上設置三個等分點A1,A2,A3。點C為上一點(不包含端點O、B),同時點C與點A1,A2,A3,B均用細繩相連接,且細繩CA1,CA2,CA3的長度相等。設細繩的總長為,
(1)設∠CA1O =(rad),將y表示成的函數關系式;
(2)請你設計,當角正弦值的大小是多少時,細繩總長最小,并指明此時 BC應為多長。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视