精英家教網 > 高中數學 > 題目詳情
設函數y=f(x)在(a,b)上的導函數為f'(x),f'(x)在(a,b)上的導函數為f''(x),若在(a,b)上,f''(x)<0恒成立,則稱函數f(x)在(a,b)上為“凸函數”.已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2

(Ⅰ)若f(x)為區間(-1,3)上的“凸函數”,則實數m=
 

(Ⅱ)若當實數m滿足|m|≤2時,函數f(x)在(a,b)上總為“凸函數”,則b-a的最大值為
 
分析:(Ⅰ)函數在區間(-1,3)上為“凸函數”,所以f″(x)<0,即對函數y=f(x)二次求導,轉化為不等式問題解決即可;
(Ⅱ)利用函數總為“凸函數”,即f″(x)<0恒成立,轉化為不等式恒成立問題,討論解不等式即可.
解答:解:由函數 f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
得,f″(x)=x2-mx-3(3分)
(Ⅰ)若f(x)為區間(-1,3)上的“凸函數”,則有f″(x)=x2-mx-3<0在區間(-1,3)上恒成立,
由二次函數的圖象,當且僅當
f″(-1)=1+m-3≤0
f″(3)=9-3m-3≤0
,
m≤2
m≥2
?m=2.(7分)
(Ⅱ)當|m|≤2時,f″(x)=x2-mx-3<0恒成立?當|m|≤2時,mx>x2-3恒成立.(8分)
當x=0時,f″(x)=-3<0顯然成立.(9分)
當x>0,x-
3
x
<m

∵m的最小值是-2.
x-
3
x
<-2

從而解得0<x<1(11分)
當x<0,x-
3
x
>m

∵m的最大值是2,∴x-
3
x
>2

從而解得-1<x<0.(13分)
綜上可得-1<x<1,從而(b-a)max=1-(-1)=2(14分)
故答案為:2;2.
點評:本題考查函數的導數與不等式恒成立問題的解法,關鍵是要理解題目所給信息(新定義),考查知識遷移與轉化能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義.對于給定的正數K,定義函數 fk(x)=
f(x),f(x)≤K
K,f(x)>K
,取函數f(x)=2-x-e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。
A、K的最大值為2
B、K的最小值為2
C、K的最大值為1
D、K的最小值為1

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義,對于給定的正數K,定義函數:fK(x)=
f(x)
1
f(x)
f(x)≤K
 
f(x)>K
,取函數f(x)=(
1
2
)|x|
,當K=
1
2
時,函數fK(x)的值域是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(a,b)上的導數為f′(x),f′(x)在(a,b)上的導數為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱函數f(x)在(a,b)上為“凸函數”.若函數f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
為區間(-1,3)上的“凸函數”,則m=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)上滿足f(-x)=f(4+x),f(4-x)=f(10+x),且在閉區間[0,7]上,f(x)=0僅有兩個根x=1和x=3,則方程f(x)=0在閉區間[-2011,2011]上根的個數有
805
805

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義.對于給定的正數K,定義函數fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函數f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视