在等差數列{an}和等比數列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差數列,a2,b2,a3+2成等比數列,數列{bn}的前n項和為Sn.
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)若Sn+an>m對任意的正整數n恒成立,求常數m的取值范圍.
(Ⅰ)an=3n﹣2,bn=2•3n﹣1;(Ⅱ){m|m<3}
解析試題分析:(Ⅰ)設等差數列{an}的公差為d,等比數列{bn}的公比為q(q>0),由已知得,解得d=q=3,所以an=3n﹣2,bn=2•3n﹣1;(Ⅱ)由(Ⅰ)知
,從而
,則3n+3n﹣3>m對任意的正整數n恒成立,構造函數f(n)=3n+3n﹣3,則
f(n+1)﹣f(n)=2•3n﹣3>0即f(n)單調遞增,所以m<f(1)=3,答案為{m|m<3}.
試題解析:(Ⅰ)設等差數列{an}的公差為d,等比數列{bn}的公比為q(q>0).
由題意,得,解得d=q=3.
∴an=3n﹣2,bn=2•3n﹣1;
(Ⅱ)∵Sn+an>m對任意的正整數n恒成立,
∴3n+3n﹣3>m對任意的正整數n恒成立,
令f(n)=3n+3n﹣3,則f(n+1)﹣f(n)=2•3n﹣3>0,
∴f(n)單調遞增,
∴m<f(1)=3.
∴常數m的取值范圍{m|m<3}
考點:1.等差數列和等比數列的通項公式;2.等比數列的求和公式;3.與正整數有關的不等式恒成立問題
科目:高中數學 來源: 題型:解答題
已知等差數列{an}滿足a3=5,a5﹣2a2=3,又等比數列{bn}中,b1=3且公比q=3.
(1)求數列{an},{bn}的通項公式;
(2)若cn=an+bn,求數列{cn}的前n項和Sn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com