【題目】某中學高三(2)班甲、乙兩名同學自高中以來每次考試成績的莖葉圖如圖,下列說法正確的是( )
A.乙同學比甲同學發揮的穩定,且平均成績也比甲同學高
B.乙同學比甲同學發揮的穩定,但平均成績不如甲同學高
C.甲同學比乙同學發揮的穩定,且平均成績也比乙同學高
D.甲同學比乙同學發揮的穩定,但平均成績不如乙同學高
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上的點A(4,t)到其焦點F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點F作直線l,使得拋物線C上恰有三個點到直線1的距離為2,求直線1的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( 。
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數都超過50人
B. 由三角形的性質,推測空間四面體的性質
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數列中,
,可得
,由此歸納出
的通項公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明:平面PAB⊥平面PAD;
(2)求二面角P﹣AB﹣D的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P到兩點(0,),(0,
),的距離之和等于4,設點P的軌跡為C.
(1)求C的方程.
(2)設直線與C交于A,B兩點,求弦長|AB|,并判斷OA與OB是否垂直,若垂直,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.
(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;
(2)求圖2中的二面角BCGA的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放以來,人們的支付方式發生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數;
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用B的學生中隨機抽查1人,發現他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓
,拋物線
的焦點
是
的一個頂點,設
是
上的動點,且位于第一象限,記
在點
處的切線為
.
(1)求的值和切線
的方程(用
表示)
(2)設與
交于不同的兩點
,線段
的中點為
,直線
與過
且垂直于
軸的直線交于點
.
(i)求證:點在定直線上;
(ii)設與
軸交于點
,記
的面積為
,
的面積為
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com