【題目】已知函數f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)圖象上存在A,B兩個不同的點與g(x)圖象上A′,B′兩點關于y軸對稱,則b的取值范圍為( )
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)
【答案】D
【解析】解:由題意知,方程f(﹣x)=g(x)在(0,+∞)上有兩個不同的解,
即x2+x﹣ =x2+bx﹣2,
則b= +1﹣
則b<1,
又b= ,
設h(x)= ,
則h′(x)= =
,
由h′(x)=0得x2﹣2x﹣1=0得x=1+ 或1﹣
(舍),
當0<x<1+ 時,h′(x)<0,函數h(x)遞減,
當x>1+ 時,h′(x)>0,函數h(x)遞增,
則當x=1+ 時,h(x)取得極小值,
此時h(1+ )=
+1﹣
=2(
﹣1)+1﹣
=2
﹣2+1﹣
=2
﹣2+1﹣2(2﹣
)=4
﹣5,
∴要使則b= +1﹣
在(0,+∞)上有兩個不同的交點,
則4 ﹣5<b<1,
即a的取值范圍是(4 ﹣5,1)
故選:D.
【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國男籃以連勝的不敗成績贏得第
屆亞錦賽冠軍,同時拿到亞洲唯一
張直通里約奧運會的入場券.賽后,中國男籃主力易建聯榮膺本屆亞錦賽
(最有價值球員),下表是易建聯在這
場比賽中投籃的統計數據.
比分 | 易建聯技術統計 | |||
投籃命中 | 罰球命中 | 全場得分 | 真實得分率 | |
中國 | ||||
中國 | ||||
中國 | ||||
中國 | ||||
中國 | ||||
中國 | ||||
中國 | ||||
中國 | ||||
中國 |
注:(1)表中表示出手
次命中
次;
(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:
(1)從上述場比賽中隨機選擇一場,求易建聯在該場比賽中
超過
的概率;
(2)我們把比分分差不超過分的比賽稱為“膠著比賽”.為了考驗求易建聯在“膠著比賽”中的發揮情況,從“膠著比賽”中隨機選擇兩場,求易建聯在這兩場比賽中
至少有一場超過
的概率;
(3)用來表示易建聯某場的得分,用
來表示中國隊該場的總分,畫出散點圖如圖所示,請根據散點圖判斷
與
之間是否具有線性相關關系?結合實際簡單說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= +
,則下列命題中正確命題的序號是 .
①f(x)是偶函數;
②f(x)的值域是[ ,2];
③當x∈[0, ]時,f(x)單調遞增;
④當且僅當x=2kπ± (k∈Z)時,f(x)=
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD,側面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點.
(Ⅰ) 求證:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由;
(Ⅲ) 求點D到平面PAM的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,網格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為( )
A.8+8 +4
B.8+8 +2
C.2+2 +
D. +
+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓O的直徑AB長度為4,點D為線段AB上一點,且 ,點C為圓O上一點,且
.點P在圓O所在平面上的正投影為點D,PD=BD.
(1)求證:CD⊥平面PAB;
(2)求點D到平面PBC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線經過點
,傾斜角為
.在以原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的方程為
.
(1)寫出直線的參數方程和曲線
的直角坐標方程;
(2)設直線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側棱的長都是底面邊長的
倍,
為側棱
上的點.
(1)求證:.
(2)若⊥平面
,求二面角
的大。
(3)在(2)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com