(14分)設函數
(1)當時,求
的最大值;
(2)令,以其圖象上任意一點
為切點的切線的斜率
恒成立,求實數
的取值范圍;
(3)當時,方程
有唯一實數解,求正數
的值.
(1)的最大值為
; (2)
;(3)
.
【解析】第一問利用當時,
解得
或
(舍去) 當
時,
,
單調增加,
當時,
,
單調減少得到最值
第二問中,
由恒成立得
恒成立
因為,等號當且僅當
時成立
所以
第三問中,時,方程
即
設,解
得(<0舍去),
在
單調增加,在
單調減少,最大值為
因為有唯一實數解,
有唯一零點,所以
最后求解得到。
解:(1)當時,
……1分
解得
或
(舍去)
……2分
當時,
,
單調增加,
當時,
,
單調減少 ……3分
所以的最大值為
……4分
(2) ……6分
由恒成立得
恒成立 ……7分
因為,等號當且僅當
時成立 ……8分
所以
……9分
(3)時,方程
即
設,解
得(<0舍去),
在
單調增加,在
單調減少,最大值為
……11分
因為有唯一實數解,
有唯一零點,所以
……12分
由得
,
因為單調遞增,且
,所以
……13分
從而
……14分
科目:高中數學 來源:2011-2012學年廣東省連州市高三12月月考理科數學試卷(解析版) 題型:解答題
(滿分14分)設函數.
(1)求的單調區間;
(2)若當時,(其中
不等式
恒成立,求實數m的取值范圍;
(3)試討論關于x的方程:在區間[0,2]上的根的個數.
查看答案和解析>>
科目:高中數學 來源:2013屆廣東省肇慶市高二下學期期中理科數學試卷(解析版) 題型:解答題
(本小題滿分14分)
(本題滿分14分)設函數=
,
∈R
(1)若=
為
的極值點,求實數
;
(2)求實數的取值范圍,使得對任意的
(0,3
],恒有
≤4
成立.
注:為自然對數的底數。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省廣州市高三綜合測試(一)理科數學試卷(解析版) 題型:解答題
.(本小題滿分14分)
設函數(
為自然對數的底數),
(
).
(1)證明:;
(2)當時,比較
與
的大小,并說明理由;
(3)證明:(
).
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省山一中高三第二次統測理科數學 題型:解答題
(本小題滿分14分)
設函數f(x)=tx2+2t2x+t-1(t∈R,t>0).
(1)求f(x)的最小值s(t);
(2)若s(t)<-2t+m對t∈(0,2)時恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010年廣州市高二第二學期期末考試數學(文)試題 題型:解答題
(本題滿分14分)
設函數,
,當
時,
取得極值。
(Ⅰ)求的值;
(Ⅱ)當時,函數
與
的圖象有三個公共點,求
的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com