精英家教網 > 高中數學 > 題目詳情

【題目】函數的一段圖象如圖所示.

(1)求函數的解析式;

(2)將函數的圖象向右平移個單位,得到的圖象,求直線

函數的圖象在內所有交點的坐標.

【答案】(1);(2).

【解析】【試題分析】(1)依據題設中提供的函數圖像,分析探求出函數解析式中的參數的值;(2)借助題設條件建立方程組分析探求:

(1)由圖知A=2,T=π,于是ω=2,

y=2sin 2x的圖象向左平移,得y=2sin(2xφ)的圖象.

于是φ=2·,

f(x)=2sin.

(2)依題意得

g(x)=2sin=2sin. 故yg(x)=2sin. 由得sin.

∴2x+2kπ或2x+2kπ(k∈Z),

xkπ或xkπ(k∈Z). ∵x∈(0,π),

xx. ∴交點坐標為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,,的中點

1求證:平面;

2在線段上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1當函數在點處的切線方程為,求函數的解析式;

21的條件下,若是函數的零點,且,求的值;

3時,函數有兩個零點,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當天賣不完,剩下的蛋糕作垃圾處理現需決策此蛋糕店每天應該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個,得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發生的概率

1若蛋糕店一天制作17個生日蛋糕,

求當天的利潤單位:元關于當天需求量單位:個,的函數解析式;

在當天的利潤不低于750元的條件下,求當天需求量不低于18個的概率

2若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的期望值為決定依據,判斷應該制作16個是17個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若某產品的直徑長與標準值的差的絕對值不超過1mm時,則視為合格品,否則視為不合格品.在近期一次產品抽樣檢查中,從某廠生產的此種產品中,隨機抽取5000件進行檢測,結果發現有50件不合格品.計算這50件不合格品的直徑長與標準值的差單位:mm,將所得數據分組,得到如下頻率分布表:

[-3,-2

0.10

[-2,-1

8

1,2]

0.50

2,3]

10

3,4]

合計

50

1.00

1將上面表格中缺少的數據填充完整.

2估計該廠生產的此種產品中,不合格品的直徑長與標準值的差落在區間1,3]內的概率.

3現對該廠這種產品的某個批次進行檢查,結果發現有20件不合格品.據此估算這批產品中的合格品的件數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線上有一個動點,過點作直線垂直于軸,動點上,且滿足為坐標原點),記點的軌跡為.

(I)求曲線的方程;

(II)若直線是曲線的一條切線,當點到直線的距離最短時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形中,分別是上的點,,的中點,交于點,沿折起,得到如圖2所示的三棱錐,其中.

1求證:平面平面

2上的中點,中點,求異面直線所成角的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓和定點,由圓外一點向圓引切線,切點為,且滿足

(1)求實數間滿足的等量關系;

(2)若以為圓心的圓與圓有公共點,試求圓的半徑最小時圓的方程;

(3)當點的位置發生變化,直線是否過定點,如果是,求出定點坐標,如果不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過點,,且它的圓心在直線上.

)求圓的方程;

)求圓關于直線對稱的圓的方程。

)若點為圓上任意一點,且點,求線段的中點的軌跡方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视