精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)證明:;
(2)當時,,求的取值范圍.

(1)證明過程詳見解析;(2).

解析試題分析:本題考查導數的運算以及利用導數研究函數的單調性、最值等基礎知識,考查綜合分析問題解決問題的能力、轉化能力和計算能力.第一問,因為,所求證,所以只需分母即可,設函數,對求導,判斷函數的單調性,求出最小值,證明最小值大于0即可,所求證的不等式的右邊,需證明函數的最大值為1即可,對求導,判斷單調性求最大值;第二問,結合第一問的結論,討論的正負,當時,,而矛盾,當時,當時,矛盾,當時,分母去分母,等價于,設出新函數,需要討論的情況,判斷在每種情況下,是否大于0,綜合上述所有情況,寫出符合題意的的取值范圍.
試題解析:(Ⅰ)設,則
時,單調遞減;
時,,單調遞增.
所以
,故.           2分

時,單調遞增;
時,,單調遞減.
所以
綜上,有.           5分
(Ⅱ)(1)若,則時,,不等式不成立.  6分
(2)若,則當時,,不等式不成立.  7分
(3)若,則等價于.  ①
,則
,則當,單調遞增,. 9分
,則當,單調遞減,
于是,若,不等式①成立當且僅當.      11分
綜上,的取值范圍是
考點:1.利用導數判斷函數的單調性;2.利用導數研究函數的最值;3.恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(Ⅰ)若,求函數的極值點;
(Ⅱ)若在區間內單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數),其圖象是曲線
(1)當時,求函數的單調減區間;
(2)設函數的導函數為,若存在唯一的實數,使得同時成立,求實數的取值范圍;
(3)已知點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線,設切線的斜率分別為.問:是否存在常數,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為常數.
(Ⅰ)若函數是區間上的增函數,求實數的取值范圍;
(Ⅱ)若時恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區間;
(2)若,在區間恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,設
(Ⅰ)求函數的單調區間
(Ⅱ)若以函數圖象上任意一點為切點的切線的斜率恒成立,求實數的最小值
(Ⅲ)是否存在實數,使得函數的圖象與函數的圖象恰有四個不同交點?若存在,求出實數的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數=
(1)當時,求函數的單調增區間;
(2)求函數在區間上的最小值;
(3)在(1)的條件下,設=+,
求證:  (),參考數據:。(13分)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)曲線y=f(x)在x=0處的切線恰與直線垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數),其中
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)當時,求函數的極大值和極小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视