精英家教網 > 高中數學 > 題目詳情
15、已知A={x||x-1|<c,c>0},B={x||x-3|>4},且A∩B=∅,求實數c的范圍.
分析:分別求出集合A和B中絕對值不等式的解集,確定出集合A和B,根據兩集合的交集為空集,列出關于c的不等式,求出不等式的解集即可得到c的范圍.
解答:解:由集合A中的不等式|x-1|<c,c>0,
解得-c<x-1<c,即1-c<x<1+c,
所以集合A=(1-c,1+c),
由集合B中的不等式|x-3|>4,
解得x-3>4或x-3<-4,即x>7或x<-1,
又A∩B=∅,在數軸上畫出兩集合的解集,

根據圖形得:1-c≥-1且1+c≤7,
解得:c≤2,又c>0,
則實數c的范圍為0<c≤2.
點評:此題考查了交集及其運算,以及空集的定義、性質,利用了數形結合的思想,其中借助數軸,根據空集的定義列出關于c的不等式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A={x|x<3},B={x|-1<x<5},則A∪B等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},則集合B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x<1},B={x|-1<x<2},則A∪B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视