精英家教網 > 高中數學 > 題目詳情
1、某種種子每粒發芽的概率都為0.9,現播種了1000粒,對于沒有發芽的種子,每粒需再補種2粒,補種的種子數記為X,則X的數學期望為(  )
分析:首先分析題目已知某種種子每粒發芽的概率都為0.9,現播種了1000粒,即不發芽率為0.1,故沒有發芽的種子數ξ服從二項分布,即ξ~B(1000,0.1).又沒發芽的補種2個,故補種的種子數記為X=2ξ,根據二項分布的期望公式即可求出結果.
解答:解:由題意可知播種了1000粒,沒有發芽的種子數ξ服從二項分布,即ξ~B(1000,0.1).
而每粒需再補種2粒,補種的種子數記為X
故X=2ξ,則EX=2Eξ=2×1000×0.1=200.
故選B.
點評:本題主要考查二項分布的期望以及隨機變量的性質,考查解決應用問題的能力.屬于基礎性題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某種種子每粒發芽的概率都為0.9,現播種了1000粒,對于沒有發芽的種子,每粒需再補種2粒,補種的種子數記為X,則X的數學期望為

(A)100         (B)200         (C)300          (D)400

查看答案和解析>>

科目:高中數學 來源: 題型:

某種種子每粒發芽的概率都為0.9,現播種了1000粒,對于沒有發芽的種子,每粒需再補種2粒,補種的種子數記為X,則X的數學期望為

(A)100         (B)200         (C)300        (D)400

查看答案和解析>>

科目:高中數學 來源:2010年高考試題(新課標全國卷)解析版(理) 題型:選擇題

 [番茄花園1] 某種種子每粒發芽的概率都為0.9,現播種了1000粒,對于沒有發芽的種子,每粒需再補種2粒,補種的種子數記為X,則X的數學期望為

(A)100         (B)200         (C)300          (D)400

 


 [番茄花園1]6.

查看答案和解析>>

科目:高中數學 來源:2010年高考試題(海南卷)解析版(理) 題型:選擇題

 某種種子每粒發芽的概率都為0.9,現播種了1000粒,對于沒有發芽的種子,每粒需再補種2粒,補種的種子數記為X,則X的數學期望為

(A)100         (B)200         (C)300        (D)400

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视