精英家教網 > 高中數學 > 題目詳情

【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置平面平面,中點.

(Ⅰ)求證:;

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)詳見解析(Ⅱ)

【解析】

(Ⅰ)由題意為等邊三角形,可以證明,由平面平面,可知平面,從而,進而可以得到平面,即可證明(Ⅱ)為坐標原點,分別為軸,軸建立空間直角坐標系,分別求出和平面的法向量,由可以得到答案。

(Ⅰ)由題意為等邊三角形,則

在三角形中,,,由余弦定理可求得,

,即

又平面平面,平面平面平面

平面

等邊三角形中,中點,則,且

平面,

(Ⅱ)為坐標原點,分別為軸,軸建立空間直角坐標系,

,,,

,

是平面的法向量,則,

所以直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率為,用隨機模擬的方法估計這三天中恰有兩天下雨的概率.可利用計算機產生09之間的整數值的隨機數,如果我們用1,23,4表示下雨,用56,78,90表示不下雨,順次產生的隨機數如下:

90 79 66 19 19 25 27 19 32 81 24 58 56 96 83

43 12 57 39 30 27 55 64 88 73 01 13 13 79 89

,這三天中恰有兩天下雨的概率約為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數記為.

1)求的分布列及數學期望;

2)在概率(=01,2,3), 的值最大, 求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線

橢圓的一個交點為,點

的焦點,且.

(1)的方程;

(2)為坐標原點,在第一象限內,橢圓上是否存在點,使過的垂線交拋物線,直線軸于,且?若存在,求出點的坐標和的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位計劃在一水庫建一座至多安裝3臺發電機的水電站,過去50年的水文資料顯示,水庫年入流量年入流量:一年內上游來水與庫區降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.

(1)求未來3年中,設表示流量超過120的年數,求的分布列及期望;

(2)水電站希望安裝的發電機盡可能運行,但每年發電機最多可運行臺數受年入流量限制,并有如下關系

年入流量

發電機最多可運行臺數

1

2

3

若某臺發電機運行,則該臺年利潤為5000萬元,若某臺發電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發電機多少臺?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業引進現代化管理體制,生產效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現翻番.同時該企業的各項運營成本也隨著收入的變化發生了相應變化.下圖給出了該企業這兩年不同運營成本占全年總收入的比例,下列說法正確的是(

A.該企業2018年原材料費用是2017年工資金額與研發費用的和

B.該企業2018年研發費用是2017年工資金額、原材料費用、其它費用三項的和

C.該企業2018年其它費用是2017年工資金額的

D.該企業2018年設備費用是2017年原材料的費用的兩倍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面. 

(1)證明:平面平面;

(2)若,為棱的中點,,求四面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十九世紀末,法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”、“隨機端點”、“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設A為圓O上一個定點,在圓周上隨機取一點B,連接AB,所得弦長AB大于圓O的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

(1)時,求函數上的最大值和最小值;

(2)若函數上的單調函數,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视