已知直線l:y=x+,圓O:x2+y2=5,橢圓E:
=1(a>b>0)的離心率e=
,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩切線的斜率之積為定值.
科目:高中數學 來源: 題型:解答題
已知一條曲線在
軸右側,
上每一點到點
的距離減去它到
軸距離的差都是1.
(1)求曲線的方程;
(2)設直線交曲線
于
兩點,線段
的中點為
,求直線
的一般式方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知分別是橢圓
的左,右頂點,點
在橢圓
上,且直線
與直線
的斜率之積為
.
(1)求橢圓的標準方程;
(2)點為橢圓
上除長軸端點外的任一點,直線
,
與橢圓的右準線分別交于點
,
.
①在軸上是否存在一個定點
,使得
?若存在,求點
的坐標;若不存在,說明理由;
②已知常數,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C:=1(a>b>0)的離心率e=
,右焦點到直線
=1的距離d=
,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
相交于
、
兩點,若
(
為坐標原點),試判斷直線
與圓
的位置關系,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com