【題目】已知函數.
(1)求函數的圖象在
處的切線方程;
(2)證明:對任意的,都有
;
(3)設,比較
與
的大小,并說明理由.
科目:高中數學 來源: 題型:
【題目】已知、
分別是橢圓
的左、右焦點,點
是橢圓
上一點,且
.
(1)求橢圓的方程;
(2)設直線與橢圓
相交于
,
兩點,若
,其中
為坐標原點,判斷
到直線
的距離是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
,…,
是變量
和
的
個樣本點,直線
是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結論中正確的是( )
A. 和
的相關系數在
和
之間
B. 和
的相關系數為直線
的斜率
C. 當為偶數時,分布在
兩側的樣本點的個數一定相同
D. 所有樣本點(
1,2,…,
)都在直線
上
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,橢圓
:
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦,當其中一條弦所在直線斜率為0時,兩弦長之和為6.
(1)求橢圓的方程;
(2)是拋物線
:
上兩點,且
處的切線相互垂直,直線
與橢圓
相交于
兩點,求弦
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 設函數
(1)當時,求函數
的單調區間;
(2)令<
≤
,其圖像上任意一點P
處切線的斜率
≤
恒成立,求實數
的取值范圍;
(3)當時,方程
在區間
內有唯一實數解,求實數
的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com