精英家教網 > 高中數學 > 題目詳情

【題目】(2015·陜西)設fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內有且僅有一個零點(記為an), 且0<an-<()n.

【答案】
(1)

fn'(2)=(n-1)2n+1


(2)

見解析。


【解析】
(1)由題設fn'(x)=1+2x+...+nxn-1, 所以fn'(2)=1+2x2+...+n2n-1, 此式等價于數列{n·2n-1}的前n項和, 由錯位相減法得fn'(2)=(n-1)2n+1。
(2)因為f(0)=-1<0, fn'()=1-2x()n≥1-2x()2>0, 所以fn(x)在在(0,)內至少存在一個零點,又fn'(x)=1+2x+...+nxn-1>0, 所以fn(x)在(0,)內單調遞增, 因此,fn(x)在(0,)內有且只有一個零點an, 由于fn(x)=-1, 所以0=fn(an)=-1, 由此可得an=+ann+1>,故<an<, 繼而得0<an-=ann+1<x()n+1=x()n

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C:+=1,(ab0)的離心率為,點(2,)在C上
(1)求C的方程;
(2)直線l不經過原點O,且不平行于坐標軸,lC有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·湖南)某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎,求下列問題:(1)求顧客抽獎1次能獲獎的概率(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為 X ,求 X 的分布列和數學期望.
(1)(1)求顧客抽獎1次能獲獎的概率
(2)(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為 , 求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·四川)已知函數f(x)=2x , g(x)=x2+ax(其中aR).對于不相等的實數x1, x2 , 設m=,n=.
現有如下命題:
(1)對于任意不相等的實數x1, x2 , 都有m>0;
(2)對于任意的a及任意不相等的實數x1, x2 , ,都有n>0;
(3)對于任意的a , 存在不相等的實數x1, x2 , 使得m=n;
(4)對于任意的a , 存在不相等的實數x1, x2 , 使得m=-n.
其中的真命題有 (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·陜西)“sin=cos”是“cos2=0”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·陜西)在直角坐標系xOy中,直線l的參數方程為(t為參數).以原點為極點,x軸正半軸為極軸建立極坐標系,c的極坐標方程為=2sin
(1)寫出c的直角坐標方程;
(2)P為直線l上一動點,當P到圓心C的距離最小時,求P的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·江蘇)如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 設AB1的中點為D,B1CBC1=E.求證:

(1)DE∥平面AA1C1C
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓(a>b>0)過點(0,),且離心率為。

(Ⅰ)求橢圓E的方程;
(II)設直線x my 1,(m R)交橢圓E與A,B兩點,判斷點G(-,0)與以線段AB為直徑的圓的位置關系,并說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,.
(1)(I)求的單調區間和極值;
(2)(II)證明:若存在零點,則的區間(1,]上僅有一個零點。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视