精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,圓O的兩弦AB和CD交于點E,作EF∥CB,并且交AD的延長線于點F,FG切圓O于點G.

(1)求證:△DEF∽△EFA;
(2)如果FG=1,求EF的長.

【答案】
(1)證明:因為EF∥CB,所以∠BCE=∠FED,又∠BAD=∠BCD,所以∠BAD=∠FED,

又∠EFD=∠EFD,所以△DEF∽△EFA.


(2)解:由(1)得 ,EF2=FAFD.

因為FG是切線,所以FG2=FDFA,所以EF=FG=1.


【解析】(1)由同位角相等得出∠BCE=∠FED,由圓中同弧所對圓周角相等得出∠BAD=∠BCD,結合公共角∠EFD=∠EFD,證出△DEF∽△EFA(2)由(1)得EF2=FAFD,再由圓的切線長定理FG2=FDFA,所以EF=FG=1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】的展開式的各項系數之和為M,二項式系數之和為N,M-N=992.

(1)判斷該展開式中有無x2項?若有,求出它的系數;若沒有,說明理由;

(2)求此展開式中有理項的項數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}的通項an=n2(cos2 ﹣sin2 ),其前n項和為Sn , 則S30

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點P(3,0)在圓C:(x﹣m)2+(y﹣2)2=40內,動直線AB過點P且交圓C于A、B兩點,若△ABC的面積的最大值為20,則實數m的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點,F為其右焦點,2|AF||FB|的等差中項,|AF||FB|的等比中項.P是橢圓C上異于A,B的任一動點,過點A作直線l⊥x.以線段AF為直徑的圓交直線AP于點A,M,連接FM交直線l于點Q.

(1)求橢圓C的方程;

(2)試問在x軸上是否存在一個定點N,使得直線PQ必過該定點N?若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,使 成立,則稱為函數的一個“生成點”,則函數的“生成點”共有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)若函數是奇函數,求實數的值;

(2)在在(1)的條件下,判斷函數與函數的圖像公共點個數,并說明理由;

(3)當時,函數的圖象始終在函數的圖象上方,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E﹣BCD的體積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视