精英家教網 > 高中數學 > 題目詳情

【題目】如圖,DC⊥平面ABC,,,P、Q分別為AEAB的中點.

(1)證明:平面.

(2)求異面直線所成角的余弦值;

(3)求平面與平面所成銳二面角的大小。

【答案】(1)見證明;(2) (3)

【解析】

1)根據三角形中位線性質得線線平行,再根據線面平行判定定理得結果,(2)先根據條件建立空間直角坐標系,設各點坐標,利用向量數量積求直線方向向量夾角,即得異面直線所成角,(3)先根據條件建立空間直角坐標系,設各點坐標,利用方程組解得平面法向量,根據向量數量積得法向量夾角,最后根據向量夾角與二面角關系得結果.

解:(1)證明:因為分別是的中點,

所以,,

,

所以,,平面

平面,

所以,平面.

(2)因為平面

以點為坐標原點,分別以的方向為軸的正方向建立空間直角坐標系.

則得

所以,

所以

所以異面直線所成角的余弦值.

(3)由(Ⅱ)可知,,

設平面的法向量為

, .

由已知可得平面的法向量為以,

所以.

故所求平面與平面所成銳二面角的大小為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線C經過點A,B是拋物線C上異于點O的不同的兩點,其中O為原點.

1)求拋物線C的方程,并求其焦點坐標和準線方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為2;

(1)求橢圓的標準方程;

(2)設橢圓上頂點,左、右頂點分別為、.直線且交橢圓于兩點,點E 關于軸的對稱點為點,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數.

(Ⅰ)若,解不等式;

(Ⅱ)當時,函數的最小值為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,三棱錐中,平面平面,平面平面分別是邊上的點,且,,,,的中點.

(1)求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓M與直線相切,且與圓外切,記動圓M的圓心軌跡為曲線C.

(1)求曲線C的方程;

(2)若直線l與曲線C相交于A,B兩點,且O為坐標原點),證明直線l經過定點H,并求出H點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.

(Ⅰ)求證:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC=,側棱PA與底面ABCDE所成角為45°,S△PBE=,點M在側棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,已知棱,兩兩垂直,長度分別為1,2,2.若),且向量夾角的余弦值為.

(1)求的值;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦點坐標為,,過垂直于長軸的直線交橢圓于、兩點,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線與橢圓交于不同的兩點、,則的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视