已知橢圓過點
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為
(
)的直線
與橢圓
相交于
兩點,直線
、
分別交直線
于
、
兩點,線段
的中點為
.記直線
的斜率為
,求證:
為定值.
(Ⅰ);(Ⅱ)
解析試題分析:(Ⅰ)根據條件可得以下方程組: ,解這個方程組求出
、
的值便得橢圓的方程;(Ⅱ)將
用
表示出來,這樣
就是一個只含
的式子,將該式化簡即可.那么如何用
來表示
?
設,
.因為A(2,0),所以直線
的方程分別為:
.
令得:
所以
的中點為:
由此得直線的斜率為:
①
再設直線的方程為
,代入橢圓方程
得:
設,
,則由韋達定理得:
代入①式,便可將
用
表示出來,從而得到
的值.
試題解析:(Ⅰ)由題設: ,解之得
,所以橢圓
的方程為
4分
(Ⅱ)設直線的方程為
代入橢圓方程
得:
設,
,則由韋達定理得:
直線的方程分別為:
令,得:
所以
13分
考點:1、橢圓及其方程;2、直線的方程;3、中點坐標公式;4、根與系數的關系.
科目:高中數學 來源: 題型:解答題
已知點F是拋物線C:的焦點,S是拋物線C在第一象限內的點,且|SF|=
.
(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線與雙曲線
有公共焦點
,點
是曲線
在第一象限的交點,且
.
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點
為圓心的圓
與直線
相切,圓
:
.過點
作互相垂直且分別與圓
、圓
相交的直線
和
,設
被圓
截得的弦長為
,
被圓
截得的弦長為
,問:
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線:
與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且
,
,四邊形
面積S的求最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于4,設點
的軌跡為曲線C,直線過點
且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:,離心率為
,焦點
過
的直線交橢圓于
兩點,且
的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點P(0,m)(m
0),與橢圓C交于相異兩點A,B且
.若
,求m的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有=
+
成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com