精英家教網 > 高中數學 > 題目詳情

【題目】已知函數)在處的切線與直線平行.

1)求的值并討論函數上的單調性;

2)若函數為常數)有兩個零點

①求實數的取值范圍;

②求證:

【答案】(1)見解析;(2)①;②見解析.

【解析】試題分析:(1)根據切線的斜率可知在處的導數,從而求出的值,再根據導數的正負討論函數的單調區間即可;(2)①根據函數有兩個零點知,函數的最小值要小于0即可求出;②設,構造函數,利用導數確定函數單調性,再根據即可求證.

試題解析:

(1),

.

,

, ; .

上單調遞增,在上單調遞減.

∴在, ,

,

∴函數上單調遞減.

(2)①由條件可知, ,

上單調遞減,在上單調遞增;

要使函數有兩個零點,則

.

②證明:由①可知,

是兩個零點

,

上單調遞減,

,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知一個圓經過坐標原點和點(2,0),且圓心C在直線y=2x上.

1)求圓C的方程;

2)過點P-2,2)作圓C的切線PAPB,求直線PAPB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求直線的直角坐標方程及曲線的普通方程;

(2)設是曲線上的一動點,求到直線的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(小時)和銷售量(件)的關系作了統計,得到了如下數據并研究.

上架時間

2

4

6

8

10

12

銷售量

64

138

205

285

360

430

(1)求表中銷售量的平均數和中位數;

(2)① 作出散點圖,并判斷變量是否線性相關?若研究的方案是先根據前5組數據求線性回歸方程,再利用第6組數據進行檢驗,求線性回歸方程;

②若根據①中線性回歸方程得到商品上架12小時的銷售量的預測值與檢測值不超過3件,則認為得到的線性回歸方程是理想的,試問:①中的線性回歸方程是否理想.

附:線性回歸方程中, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點.

(1)在圖中作一個平面

,使得

,且平面

.(不必給出證明過程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在半徑為1的扇形AOB中(O為原點),.點Pxy)是上任意一點,則xy+x+y的最大值為( 。

A. B. 1 C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方體的棱長為2,分別為的中點,則(

A.直線與直線垂直B.直線與平面平行

C.平面截正方體所得的截面面積為D.與點到平面的距離相等

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知 分別為橢圓 的上、下焦點, 是拋物線 的焦點,點在第二象限的交點,且

(1)求橢圓的方程;

(2)與圓相切的直線 (其中)交橢圓于點, ,若橢圓上一點滿足,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統計表:

維修次數

8

9

10

11

12

頻數

10

20

30

30

10

x表示1臺機器在三年使用期內的維修次數,y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數.

(1)若=10,求yx的函數解析式;

(2)若要求“維修次數不大于的頻率不小于0.8,求n的最小值;

(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買10次還是11次維修服務?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视