【題目】已知函數(
)在
處的切線與直線
平行.
(1)求的值并討論函數
在
上的單調性;
(2)若函數(
為常數)有兩個零點
(
)
①求實數的取值范圍;
②求證:
科目:高中數學 來源: 題型:
【題目】已知一個圓經過坐標原點和點(2,0),且圓心C在直線y=2x上.
(1)求圓C的方程;
(2)過點P(-2,2)作圓C的切線PA和PB,求直線PA和PB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求直線的直角坐標方程及曲線
的普通方程;
(2)設是曲線
上的一動點,求
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(小時)和銷售量
(件)的關系作了統計,得到了如下數據并研究.
上架時間 | 2 | 4 | 6 | 8 | 10 | 12 |
銷售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中銷售量的平均數和中位數;
(2)① 作出散點圖,并判斷變量與
是否線性相關?若研究的方案是先根據前5組數據求線性回歸方程,再利用第6組數據進行檢驗,求線性回歸方程
;
②若根據①中線性回歸方程得到商品上架12小時的銷售量的預測值與檢測值不超過3件,則認為得到的線性回歸方程是理想的,試問:①中的線性回歸方程是否理想.
附:線性回歸方程中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】底面為菱形的直棱柱
中,
分別為棱
的中點.
(1)在圖中作一個平面
,使得
,且平面
.(不必給出證明過程,只要求作出
與直棱柱
的截面).
(2)若
,求平面
與平面
的距離
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知,
分別為橢圓
:
的上、下焦點,
是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
.
(1)求橢圓的方程;
(2)與圓相切的直線
:
(其中
)交橢圓
于點
,
,若橢圓
上一點
滿足
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統計表:
維修次數 | 8 | 9 | 10 | 11 | 12 |
頻數 | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機器在三年使用期內的維修次數,y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數.
(1)若=10,求y與x的函數解析式;
(2)若要求“維修次數不大于”的頻率不小于0.8,求n的最小值;
(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買10次還是11次維修服務?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com