精英家教網 > 高中數學 > 題目詳情
(12分)是否存在自然數,使得f (n) = (2n+7)·3n+ 9對于任意都能被整除,若存在,求出(如果m不唯一,只求m的最大值);若不存在,請說明理由。
命題對于一切自然數nnN)均成立。
.猜想的值應為其最大公約數36.
顯然正確.
②設n=k時命題正確,即f (k) = (2k+7)·3k+ 9 能被36整除.
時 ,
能被36整除,
n=k+1時,命題正確。
綜合上述,命題對于一切自然數nnN)均成立。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

用數學歸納法證明等式對所以n∈N*均成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用數學歸納法證明“”()時,從“”時,左邊的式子之比是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

數列中,,用數學歸納法證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,則對于
          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用數學歸納法證明“”時,
的假設證明時,如果從等式左邊證明右邊,則必須證得右邊為(   )
A、           B、
C、           D、

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用數學歸納法證明1+a+a2+…+an+1=(n∈N,a≠1),在驗證n=1成立時,等式左邊所得的項為( )
A.1B.1+aC.1+a+a2D.1+a+a2+a3.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用數學歸納法證明“當n 為正奇數時,能被整除”,在第二步時,正確的證法是(     )
A.假設,證明命題成立
B.假設,證明命題成立
C.假設,證明命題成立
D.假設,證明命題成立

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)用數學歸納法證明等式對所以n∈N*均成立.
            

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视