精英家教網 > 高中數學 > 題目詳情

【題目】在正方形中, 的中點為點, 的中點為點,沿向上折起得到,使得面,此時點位于點處.

(Ⅰ)證明: ;

(Ⅱ)求面與面所成二面角的正弦值.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:(Ⅰ)利用折疊前后的不變量得到有關垂直關系,進而利用線面垂直的判定定理得到線面垂直,再利用線面垂直的性質得到線線垂直;(Ⅱ)同(Ⅰ)證明有關線面垂直和線線垂直,進而建立適當的空間直角坐標系,利用空間向量進行求解.

試題解析:(Ⅰ)證明:連接,交于點,交于點,連接, ,

如圖所示,在正方形中, 中點, 中點,所以;

由于沿著翻折而來,從而,所以,

在平面內,所以.

(Ⅱ)設中點為,連接,交于點,連接. 同(Ⅰ)可證,從而面,所以;由,可得面,又因為面,且面與面相交于,所以

為原點,過點軸平行于,作軸平行于, 軸,如圖所示,不妨設正方形邊長為3,從而 , , , ,

又因為,所以, ,在直角中,由勾股定理可得,

所以,即,所以可以求得面的法向量,面的法向量,所以可以得出法向量,則所求二面角的正弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上橫坐標為的點到拋物線頂點的距離與該點到拋物線準線的距離相等。

(1)求拋物線的方程;

(2)設直線與拋物線交于兩點,若,求實數的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,邊長為2的菱形ABCD中,∠A=60°,E、F分別是BC,DC的中點,G為 BF、DE的交點,若 =

(1)試用 , 表示 , ;
(2)求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題錯誤的是( )

A. 如果平面平面,那么平面內所有直線都垂直于平面

B. 如果平面平面,那么平面內一定存在直線平行于平面

C. 如果平面平面,平面平面, ,那么平面

D. 如果平面不垂直于平面,那么平面內一定不存在直線垂直于平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某書店銷售剛剛上市的某知名品牌的高三數學單元卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如表數據:

單價x(元)

18

19

20

21

22

銷量y(冊)

61

56

50

48

45

(1)求試銷5天的銷量的方差和yx的回歸直線方程;

(2)預計今后的銷售中,銷量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,

為了獲得最大利潤,該單元卷的單價應定為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在(0,2π)內,使sinx﹣cosx<0成立的x取值范圍是(
A.( ,
B.(0,
C.( ,π)∪( ,2π)
D.(0, )∪( ,2π)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個周期內的圖象如圖所示,則函數的解析式為 . 直線y= 與函數y=f(x)(x∈R)圖象的所有交點的坐標為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=sin(2ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且函數圖象關于點(﹣ ,0)對稱,則函數的解析式為(
A.y=sin(4x+
B.y=sin(2x+
C.y=sin(2x+
D.y=sin(4x+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大;

(Ⅱ)若,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视