若三角形ABC的三條邊長分別為a=2,b=3,c=4,則2bccosA+2cacosB+2abcosC=( )
A.29
B.30
C.9
D.10
【答案】分析:由余弦定理得 2bccosA=(b2+c2-a2 ),2cacosB=(a2+c2-b2),2abcosC=(a2+b2-c2),代入要求的式子進行運算.
解答:解:由余弦定理得2bccosA+2cacosB+2abcosC=(b2+c2-a2 )+(a2+c2-b2)+(a2+b2-c2)=a2+b2+c2=29,
故選 A.
點評:本題考查余弦定理得變形應用,利用 2bccosA=(b2+c2-a2 ) 是解題的關鍵.