精英家教網 > 高中數學 > 題目詳情
在自然數集N中,被3除所得余數為r的自然數組成一個“堆”,記為[r],即[r]={3k+r|k∈N},其中r=0,1,2,給出如下四個結論:
①2011∈[1];②若a∈[1],b∈[2]則a+b∈[0];③N=[0]∪[1]∪[2];④若a,b屬于同一“堆”,則a-b不屬于這一“堆”.
其中正確結論的個數(  )
分析:根據題中“堆”的理解,在整數集Z中,被3除所得余數為r的所有整數組成一個“堆”,對于各個結論進行分析:①∵2011÷3=670…1;②a∈[1],b∈[2]則=3k+1,b=3m+2,a+b=3(k+m)+3=3(k+m+1),即a+b∈[0],故②正確;③整數集中的數被3除的數可以且只可以分成三類,故Z=[0]∪[1]∪[2];④從正反兩個方面考慮即可.
解答:解:①∵2011÷3=670…1,∴2011∈[1],故①正確;
②a∈[1],b∈[2]則a=3k+1,b=3m+2,a+b=3(k+m)+3=3(k+m+1),即a+b∈[0],故②正確;
③∵整數集中的數被3除的數可以且只可以分成三類,故Z=[0]∪[1]∪[2],故③正確;
④∵整數a,b屬于同一“堆”,∴整數a,b被3除的余數相同,從而a-b被3除的余數為0,
當a,b都屬于[0]時,則有a-b∈[0],故④錯誤.
∴正確結論的個數是3.
故選C.
點評:本題主要考查了選修3同余的性質,具有一定的創新,關鍵是對題中“堆”的理解解,屬于創新題.
練習冊系列答案
相關習題

科目:高中數學 來源:2015屆遼寧省本溪市高一上學期第一次月考數學試卷(解析版) 題型:選擇題

在自然數集N中,被3除所得余數為r的自然數組成一個“堆”,記為,即,其中,給出如下四個結論:

     ②若;③      

④若屬于同一“堆”,則不屬于這一“堆”其中正確結論的個數   (    )   

A.1           B.2       C.3                D.4

 

查看答案和解析>>

科目:高中數學 來源:2012屆福建省福州八縣(市)協作校高二下學期期末聯考數學(文) 題型:選擇題

在自然數集N中,被3除所得余數為r的自然數組成一個“堆”,記為,即

,其中,給出如下四個結論:

                                                          ②若;③             ④若屬于同一“堆”,則不屬于這一“堆”其中正確結論的個數             (    )             

A.1                                  B.2                            C.3                            D.4

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在自然數集N中,被3除所得余數為r的自然數組成一個“堆”,記為[r],即[r]={3k+r|k∈N},其中r=0,1,2,給出如下四個結論:
①2011∈[1];②若a∈[1],b∈[2]則a+b∈[0];③N=[0]∪[1]∪[2];④若a,b屬于同一“堆”,則a-b不屬于這一“堆”.
其中正確結論的個數(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:2012-2013學年山東省聊城市陽谷縣華陽中學高一(上)第一次調研數學試卷(解析版) 題型:選擇題

在自然數集N中,被3除所得余數為r的自然數組成一個“堆”,記為[r],即[r]={3k+r|k∈N},其中r=0,1,2,給出如下四個結論:
①2011∈[1];②若a∈[1],b∈[2]則a+b∈[0];③N=[0]∪[1]∪[2];④若a,b屬于同一“堆”,則a-b不屬于這一“堆”.
其中正確結論的個數( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视