精英家教網 > 高中數學 > 題目詳情

【題目】有三個游戲規則如表,袋子中分別裝有形狀、大小相同的球,從袋中無放回地取球,

游戲1

游戲2

游戲3

袋中裝有3個黑球和2個白球

袋中裝有2個黑球和2個白球

袋中裝有3個黑球和1個白球

從袋中取出2個球

從袋中取出2個球

從袋中取出2個球

若取出的兩個球同色,則甲勝

若取出的兩個球同色,則甲勝

若取出的兩個球同色,則甲勝

若取出的兩個球不同色,則乙勝

若取出的兩個球不同色,則乙勝

若取出的兩個球不同色,則乙勝

問其中不公平的游戲是(
A.游戲2
B.游戲3
C.游戲1和游戲2
D.游戲1和游戲3

【答案】C
【解析】解:對于游戲1,取出兩球同色的概率為 ,取出不同色的概率為 ,不公平; 對于游戲2,取出兩球同色的概率為 ,取出不同色的概率為 ,不公平;
對于游戲3,取出兩球同色即全是黑球,概率為0.5,取出不同色的也為0.5,公平;
故選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大小;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司對新研發的一種產品進行合理定價,且銷量與單價具有相關關系,將該產品按事先擬定的價格進行試銷,得到如下數據:

單價x(單位:元)

8

8.2

8.4

8.6

8.8

9

銷量y(單位:萬件)

90

84

83

80

75

68


(1)現有三條y對x的回歸直線方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根據所學的統計學知識,選擇一條合理的回歸直線,并說明理由.
(2)預計在今后的銷售中,銷量與單價服從(1)中選出的回歸直線方程,且該產品的成本是每件5元,為使公司獲得最大利潤,該產品的單價應定多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

)當時,求的單調區間和極值.

)若對于任意,都有成立,求的取值范圍 ;

)若證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩位學生參加數學競賽培訓.現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取5次,記錄如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用莖葉圖表示這兩組數據;
(Ⅱ)現要從中選派一人參加數學競賽,你認為選派哪位學生參加合適?請說明理由.(用樣本數據特征來說明.)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在物理實驗中,為了研究所掛物體的重量x對彈簧長度y的影響.某學生通過實驗測量得到物體的重量與彈簧長度的對比表:

物體重量(單位g)

1

2

3

4

5

彈簧長度(單位cm)

1.5

3

4

5

6.5

參考公式:
①.樣本數據x1 , x2 , …xn的標準差
s= ,其中 為樣本的平均數;
②.線性回歸方程系數公式 = = , =

(1)畫出散點圖;
(2)利用所給的參考公式,求y對x的回歸直線方程;
(3)預測所掛物體重量為8g時的彈簧長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC=
(Ⅰ)若點B( ),求cos∠AOC的值;
(Ⅱ)設∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數,并求出y的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+(m+2)x+(2m+5)(m≠0)的兩個零點分別在區間(﹣1,0)和區間(1,2)內,則實數m的取值范圍是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视