精英家教網 > 高中數學 > 題目詳情
設x>0,y>0,z>0,
(Ⅰ)比較
x2
x+y
3x-y
4
的大;
(Ⅱ)利用(Ⅰ)的結論,證明:
x3
x+y
+
y3
y+z
+
z3
z+x
xy+yz+zx
2
分析:(Ⅰ)對兩個解析式作差,對差的形式進行化簡整理,判斷出差的符號,得出兩數的大。
(Ⅱ)利用(Ⅰ)類比出一個結論,利用綜合法證明不等式即可.
解答:(Ⅰ)∵
x2
x+y
-
3x-y
4
=
(x-y)2
4(x+y)
≥0
,∴
x2
x+y
3x-y
4
.(5分)
(Ⅱ)由(1)得
x3
x+y
3x2-xy
4

類似的
y3
y+z
3y2-yz
4
,
z3
z+x
3z2-zx
4
,(7分)
x2+y2+z2-(xy+yz+zx)=
1
2
[(x-y)2+(y-z)2+(z-x)2]≥0
;
∴x2+y2+z2≥xy+yz+zx(9分)(另證:x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,三式相加).
x3
x+y
+
y3
y+z
+
z3
z+x
3x2-xy+3y2-yz+3z2-zx
4
=
3(x2+y2+z2)-xy-yz-zx
4
3(xy+yz+zx)-xy-yz-zx
4
=
xy+yz+zx
2
(12分)
點評:本題考查綜合法與分析法,解題的關鍵是根據(I)類比出一個條件作為證明的前提.再利用綜合法證明,正確理解綜合法與分析法的原理與作用,順利解題很關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設x>0,y>0,z>0,求證:
x2+xy+y2
+
y2+yz+z2
>x+y+z.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x>0,y>0,z>0,且x2+y2+z2=1.
(Ⅰ)求證:xy+yz+xz≤1;   
(Ⅱ)求(
yz
x
+
xz
y
+
xy
z
2的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x>0,y>0,z>0.
(Ⅰ)利用作差法比較
x2
x+y
3x-y
4
的大;
(Ⅱ)求證:x2+y2+z2≥xy+yz+zx;
(Ⅲ)利用(Ⅰ)(Ⅱ)的結論,證明:
x3
x+y
+
y3
y+z
+
z3
z+x
xy+yz+zx
2

查看答案和解析>>

科目:高中數學 來源:2010-2011學年浙江省杭州二中高二(下)期中數學試卷(理科)(解析版) 題型:解答題

設x>0,y>0,z>0,
(Ⅰ)比較的大;
(Ⅱ)利用(Ⅰ)的結論,證明:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视