精英家教網 > 高中數學 > 題目詳情

【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量高于4000億元的省份共有3個;

②與去年同期相比,2017年第一季度五個省的總量均實現了增長;

③去年同期的總量前三位依次是省、省、省;

④2016年同期省的總量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

【答案】C

【解析】對于①,2017年第一季度GDP總量高于4000億元的省份有A,B,C,D共4省,所以①錯誤;對于②,由圖形知與去年同期相比,2017年第一季度五個省的GDP總量均實現了增長,所以②正確;對于③,根據已知數據,去年同期的GDP總量B省為6037.38,D省為6046.07,所以D省最高,故③錯誤;對于④,由圖計算同期C省的GDP總量居于第四位,故④正確。故選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若關于的不等式的解集為的解集為.

1)試求;

2)是否存在實數,使得?若存在,求的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一盒中裝有9張各寫有一個數字的卡片,其中4張卡片上的數字是1,3張卡片上的數字是2,2張卡片上的數字是3,從盒中任取3張卡片.

(Ⅰ)求所取3張卡片上的數字完全相同的概率;

表示所取3張卡片上的數字的中位數,求的分布列與數學期望

(注:若三個數滿足,則稱為這三個數的中位數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中, , , 中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結論;

(2)若,過的平面交于點,且的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有兩個極值點.

(1)求實數的取值范圍;

(2)設,若函數的兩個極值點恰為函數的兩個零點,當時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為研究某種圖書每冊的成本費(元)與印刷數(千冊)的關系,收集了一些數據并作了初步處理,得到了下面的散點圖及一些統計量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中,

(1)根據散點圖判斷: 哪一個更適宜作為每冊成本費(元)與印刷數(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程(回歸系數的結果精確到0.01);

(3)若每冊書定價為10元,則至少應該印刷多少冊才能使銷售利潤不低于78840元?(假設能夠全部售出,結果精確到1)

(附:對于一組數據 ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題共14分)如圖,在三棱錐中, 底面

,點分別在棱上,且)求證: 平面;()當的中點時,求與平面所成的角的大。唬)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),它與曲線

C:(y-2)2-x2=1交于A、B兩點.

(1)求|AB|的長;

(2)在以O為極點,x軸的正半軸為極軸建立極坐標系,設點P的極坐標為,求點P到線段AB中點M的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為激發學生學習的興趣,老師上課時在黑板上寫出三個集合: ;然后叫甲、乙、丙三位同學到講臺上,并將中的數告訴了他們,要求他們各用一句話來描述,以便同學們能確定該數,以下是甲、乙、丙三位同學的描述:

甲:此數為小于6的正整數;乙:AB成立的充分不必要條件;

丙:AC成立的必要不充分條件

若老師評說這三位同學都說得對,則中的數為 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视