已知橢圓:
的左焦點為
,且過點
.
(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求
的值;
②若M、N分別為橢圓E的左、右頂點,證明:
(1) ;(2)參考解析
解析試題分析:(1)因為由橢圓:
的左焦點為
,即
.由點
到兩焦點的距離和可求出橢圓的長軸
.從而可以求出橢圓的方程.
(2)(1)通過假設直線的方程聯立橢圓方程消去y可得一個一元二次方程,由韋達定理即可求出直線的斜率k的值,從而解出A,B兩點的坐標,即可得結論.(2)分別求兩直線
的斜率和,利用韋達定理得到的關系式即可證明斜率和為零.即可得到結論.
試題解析:(1)因為焦點為, C=1,又橢圓過
,
取橢圓的右焦點,
,由
得
,
所以橢圓E的方程為
(2)①設,
,
顯然直線斜率存在,設直線
方程為
由得:
得,
,
,
,
,符合
,由對稱性不妨設
,
解得,
②若,則直線
的方程為
,
將代入得
, 不滿足題意,
同理
,
,
考點:1.橢圓的性質.2.直線與橢圓的位置關系.3.韋達定理.4.幾何問題構建代數方法解決.
科目:高中數學 來源: 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內,且到直線l:y=x-
的距離為
-
,點M是直線l與圓O的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率與雙曲線
的離心率互為倒數,直線
與以原點為圓心,以橢圓
的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為
,右焦點為
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設第(2)問中的與
軸交于點
,不同的兩點
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知分別是橢圓
的左,右頂點,點
在橢圓
上,且直線
與直線
的斜率之積為
.
(1)求橢圓的標準方程;
(2)點為橢圓
上除長軸端點外的任一點,直線
,
與橢圓的右準線分別交于點
,
.
①在軸上是否存在一個定點
,使得
?若存在,求點
的坐標;若不存在,說明理由;
②已知常數,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點,線段AB的中點為P,
(1)求點P的坐標(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過雙曲線的左焦點F1,作傾斜角為的直線m交雙曲線于M、N兩點,期中
,F2是雙曲線的右焦點,求△F2MN的面積S關于傾斜角
的表達式。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數關系,直線l:x-y+
=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點
在
軸上,拋物線上的點
到
的距離為2,且
的橫坐標為1.直線
與拋物線交于
,
兩點.
(1)求拋物線的方程;
(2)當直線,
的傾斜角之和為
時,證明直線
過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com