精英家教網 > 高中數學 > 題目詳情
已知a>0且a≠1,
(1)求函數f(x)的解析式;
(2)試判定函數f(x)的奇偶性與單調性;
(3)若對于函數f(x),當x∈(-1,1)時,有f(1-m)+f(3m-2)<0恒成立,求實數m的取值范圍.

解:(1)令,則,得,
所以,。
(2)因為,
所以函數f(x)為奇函數,
任取,則
因為當a>0且a≠1,恒有,所以f(x)為增函數。
(3)因為f(x)為奇函數,所以由f(1-m)+f(3m-2)<0得,f(1-m)<-f(3m-2)=f(2-3m),
又f(x)為增函數,
所以,有,解得:,
所以,實數m的取值范圍是()。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0且a≠1,設p:函數y=ax在R上單調遞增,q:設函數y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數y≥1恒成立,若p∧q為假,p∨q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•普陀區二模)已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:普陀區二模 題型:解答題

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视