【題目】已知函數.
(1)若,求
的單調區間;
(2)證明:只有一個零點.
【答案】解:
(1)當a=3時,f(x)=,f ′(x)=
.
令f ′(x)=0解得x=或x=
.
當x∈(–∞,)∪(
,+∞)時,f ′(x)>0;
當x∈(,
)時,f ′(x)<0.
故f(x)在(–∞,),(
,+∞)單調遞增,在(
,
)單調遞減.
(2)由于,所以
等價于
.
設=
,則g ′(x)=
≥0,僅當x=0時g ′(x)=0,所以g(x)在(–∞,+∞)單調遞增.故g(x)至多有一個零點,從而f(x)至多有一個零點.
又f(3a–1)=,f(3a+1)=
,故f(x)有一個零點.
綜上,f(x)只有一個零點.
【解析】分析:(1)將代入,求導得
,令
求得增區間,令
求得減區間;(2)令
,即
,則將問題轉化為函數
只有一個零點問題,研究函數
單調性可得.
詳解:(1)當a=3時,f(x)=,f ′(x)=
.
令f ′(x)=0解得x=或x=
.
當x∈(–∞,)∪(
,+∞)時,f ′(x)>0;
當x∈(,
)時,f ′(x)<0.
故f(x)在(–∞,),(
,+∞)單調遞增,在(
,
)單調遞減.
(2)由于,所以
等價于
.
設=
,則g ′(x)=
≥0,僅當x=0時g ′(x)=0,所以g(x)在(–∞,+∞)單調遞增.故g(x)至多有一個零點,從而f(x)至多有一個零點.
又f(3a–1)=,f(3a+1)=
,故f(x)有一個零點.
綜上,f(x)只有一個零點.
科目:高中數學 來源: 題型:
【題目】已知圓上一動點
,過點
作
軸,垂足為
點,
中點為
.
(1)當在圓
上運動時,求點
的軌跡
的方程;
(Ⅱ)過點的直線
與
交于
兩點,當
時,求線段
的垂直平分線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉換重大工程.某企業響應號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數分布表.
表1:設備改造后樣本的頻數分布表
質量指標值 | ||||||
頻數 | 4 | 36 | 96 | 28 | 32 | 4 |
(1)完成下面的列聯表,并判斷是否有99%的把握認為該企業生產的這種產品的質量指標值與設備改造有關;
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據圖1和表1提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;
(3)根據市場調查,設備改造后,每生產一件合格品企業可獲利180元,一件不合格品虧損 100元,用頻率估計概率,則生產1000件產品企業大約能獲利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某互聯網公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量
(單位:萬元)和收益
(單位:萬元)的數據如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②
分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統計量的值:
(Ⅰ)根據殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數據被認為是異常數據,需要剔除:
(。┨蕹惓祿笄蟪觯á瘢┲兴x模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預報值是多少?
附:對于一組數據,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】①在同一坐標系中,與
的圖象關于
軸對稱
②函數是奇函數
③函數的圖象關于
成中心對稱
④函數的最大值為
以上四個判斷正確有_____________.(寫上序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標的概率.先由計算器給出0到9之間取整數的隨機數,指定0,1,2,3表示沒有擊中目標,4,5,6,7,8,9表示擊中目標,以4個隨機數為一組,代表射擊4次的結果,經隨機模擬產生了20組如下的隨機數:
7327 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據以上數據估計該運動員射擊4次至少擊中3次的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大豆,古稱菽,原產中國,在中國已有五千年栽培歷史。皖北多平原地帶,黃河故道土地肥沃,適宜種植大豆。2018年春,為響應中國大豆參與世界貿易的競爭,某市農科院積極研究,加大優良品種的培育工作。其中一項基礎工作就是研究晝夜溫差大小與大豆發芽率之間的關系。為此科研人員分別記錄了5天中每天100粒大豆的發芽數得如下數據表格:
科研人員確定研究方案是:從5組數據中選3組數據求線性回歸方程,再用求得的回歸方程對剩下的2組數據進行檢驗.
(1)求剩下的2組數據恰是不相鄰的2天數據的概率;
(2)若選取的是4月5日、6日、7日三天數據據此求關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與實際數據的誤差絕對值均不超過1粒,則認為得到的線性回歸方程是可靠的,請檢驗(Ⅱ)中回歸方程是否可靠?
注:
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com