【題目】如圖,圓錐頂點為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.
【答案】
(1)證明:設平面PAB與平面PCD的交線為l,則
∵AB∥CD,AB平面PCD,∴AB∥平面PCD
∵AB面PAB,平面PAB與平面PCD的交線為l,∴AB∥l
∵AB在底面上,l在底面外
∴l與底面平行;
(2)解:設CD的中點為F,連接OF,PF
由圓的性質,∠COD=2∠COF,OF⊥CD
∵OP⊥底面,CD底面,∴OP⊥CD
∵OP∩OF=O
∴CD⊥平面OPF
∵CD平面PCD
∴平面OPF⊥平面PCD
∴直線OP在平面PCD上的射影為直線PF
∴∠OPF為OP與平面PCD所成的角
由題設,∠OPF=60°
設OP=h,則OF=OPtan∠OPF=
∵∠OCP=22.5°,∴
∵tan45°= =1
∴tan22.5°=
∴OC= =
在Rt△OCF中,cos∠COF= =
=
∴cos∠COD=cos(2∠COF)=2cos2∠COF﹣1=17﹣12
【解析】(1)利用線面平行的判定與性質,可證平面PAB與平面PCD的交線平行于底面;(2)先作出OP與平面PCD所成的角,再求出OC,OF,求出cos∠COF,利用二倍角公式,即可求得cos∠COD.
【考點精析】解答此題的關鍵在于理解空間中直線與直線之間的位置關系的相關知識,掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點,以及對空間中直線與平面之間的位置關系的理解,了解直線在平面內—有無數個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.
科目:高中數學 來源: 題型:
【題目】已知函數的圖象如圖所示,則下列說法正確的是( )
A. 函數的周期為
B. 函數在
上單調遞增
C. 函數的圖象關于點
對稱
D. 把函數的圖象向右平移
個單位,所得圖象對應的函數為奇函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,以x軸非負半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的參數方程為 (θ為參數),直線l的極坐標方程為ρcos
=2
.
(1)寫出曲線C的普通方程和直線l的直角坐標方程;
(2)求曲線C上的點到直線l的最大距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)在R上可導,其導函數為f′(x),且函數y=(1﹣x)f′(x)的圖象如圖所示,則下列結論中一定成立的是( )
A.函數f(x)有極大值f(2)和極小值f(1)
B.函數f(x)有極大值f(﹣2)和極小值f(1)
C.函數f(x)有極大值f(2)和極小值f(﹣2)
D.函數f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數據b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發現它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com