【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若時,求
與
的交點坐標;
(2)若上的點到
距離的最大值為
,求
.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
是邊長等于2的等邊三角形,四邊形
是菱形,
,
,
是棱
上的點,
.
,
分別是
,
的中點.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面PAC⊥平面ABC,點E、F、O分別為線段PA、PB、AC的中點,點G是線段CO的中點,AB=BC=AC=4,PA=PC=2.求證:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學生課外閱讀情況,隨機抽取了100名學生,并獲得了他們一周課外閱讀時間(單位:小時)的數據,按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數是第五組頻數的3倍。
(1)求的值,并根據頻率分布直方圖估計該校學生一周課外閱讀時間的平均值;
(2)現從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.
(1)設P是上的一點,且AP⊥BE,求∠CBP的大。
(2)當AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】氣象意義上,從春季進入夏季的標志為:“連續5天的日平均溫度不低于22℃”.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據(記錄數據都是正整數):
①甲地:5個數據的中位數為24,眾數為22;
②乙地:5個數據的中位數為27,總體均值為24;
③丙地:5個數據的中有一個數據是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、
為拋物線
上的兩點,
與
的中點的縱坐標為4,直線
的斜率為
.
(1)求拋物線的方程;
(2)已知點,
、
為拋物線
(除原點外)上的不同兩點,直線
、
的斜率分別為
,
,且滿足
,記拋物線
在
、
處的切線交于點
,若點
、
的中點的縱坐標為8,求點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com