【題目】已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的
與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過定點斜率為
的直線與橢圓
交于
兩點,若
,求斜率
的值;
(Ⅲ)若(Ⅱ)中的直線與
交于
兩點,設點
在
上,試探究使
的面積為
的點
共有幾個?證明你的結論.
【答案】(Ⅰ);(Ⅱ)
;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)運用橢圓的離心率公式和直線和圓相切的條件,結合的關系,解方程可得
,進而得到橢圓方程;(Ⅱ)設直線
方程為
,代入橢圓方程,運用韋達定理和向量的數量積的坐標表示,解方程可得斜率
;(Ⅲ)求得圓心到直線的距離,圓的弦長
,由三角形的面積公式可得
到
的距離,結合半徑與圓心到直線的距離之差的關系,即可判斷
的個數.
試題解析:(Ⅰ)原點到直線
的距離
.
所以,橢圓
的方程為
.
(Ⅱ)將直線與橢圓
聯立,消去
,整理得
,由韋達定理得
.
.
.
令,得
.
(Ⅲ)由(2)知,直線的方程為
或
.
原點到直線
的距離
,
弦長
.
若上存在點
使
的面積為
,則點
到直線
的距離
.
當直線
的斜率
時,有4個點
使
面積為
;當直線
的斜率
時,有4個點
使
面積為
.
【方法點晴】本題主要考查待定系數求橢圓方程以及直線與橢圓的位置關系和數量積公式,屬于難題.用待定系數法求橢圓方程的一般步驟;①作判斷:根據條件判斷橢圓的焦點在軸上,還是在
軸上,還是兩個坐標軸都有可能;②設方程:根據上述判斷設方程
或
;③找關系:根據已知條件,建立關于
、
、
的方程組;④得方程:解方程組,將解代入所設方程,即為所求.
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①“若為
的極值點,則
”的逆命題為真命題;
②“平面向量的夾角是鈍角”的充分不必要條件是
③若命題,則
④函數在點
處的切線方程為
.
其中不正確的個數是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了1至6月每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下的資料:
該興趣小組確定的研究方案是:現從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選用的2組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數據,請根據2至5月的數據,求出關于
的線性回歸方程
;
(3)若有線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com