已知橢圓的中心在原點
,焦點在
軸上,離心率為
,右焦點到右頂點的距離為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于
兩點的直線
:
,使得
成立?若存在,求出實數
的取值范圍,若不存在,請說明理由.
(Ⅰ),(Ⅱ)
.
解析試題分析:(Ⅰ)求橢圓標準方程,關鍵利用待定系數法求出a,b. 由及
,解得
,
.所以
.所以橢圓
的標準方程是
.(Ⅱ)存在性問題,一般從假設存在出發,建立等量關系,有解就存在,否則不存在. 條件
的實質是垂直關系,即
.所以
.
,
,由
得
.
,
.代入化簡得,
.由
化簡得
.解得,
.
由,
,所以實數
的取值范圍是
.
(Ⅰ)設橢圓的方程為
,半焦距為
.
依題意,由右焦點到右頂點的距離為
,得
.
解得,
.
所以.
所以橢圓的標準方程是
. 4分
(Ⅱ)解:存在直線,使得
成立.理由如下:
由得
.
,化簡得
.
設,則
,
.
若成立,
即,等價于
.所以
.
,
,
,
化簡得,.
將代入
中,
,
解得,.
又由,
,
從而,
或
.
所以實數的取值范圍是
. 14分
考點:橢圓標準方程,直線與橢圓位置關系
科目:高中數學 來源: 題型:解答題
過拋物線C:上的點M分別向C的準線和x軸作垂線,兩條垂線及C的準線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標;
(2)過點M作傾斜角互補的兩條直線分別與拋物線C交于A,B兩點,如果點M在直線AB的上方,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點,過點F且與直線
相切的動圓圓心為點M,記點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點A的坐標為,與曲線E相交于B,C兩點,直線AB,AC分別交直線
于點S,T.試判斷以線段ST為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013•浙江)已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x﹣2于M、N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
長方形中,
,
.以
的中點
為坐標原點,建立如圖所示的直角坐標系.
(1) 求以、
為焦點,且過
、
兩點的橢圓的標準方程;
(2) 過點的直線
交(1)中橢圓于
兩點,是否存在直線
,使得以線段
為直徑的圓恰好過坐標原點?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關于直線
對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓
的位置關系,并說明理由;
(3)若圓的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的準線與x軸交于點M,過點M作圓
的兩條切線,切點為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com