【題目】如圖,在三棱錐S﹣ABC中,M、N分別是棱SC、BC的中點,且MN⊥AM,若AB=2 ,則此正三棱錐外接球的體積是( )
A.12π
B.4 π
C. π
D.12 π
【答案】B
【解析】解:∵三棱錐S﹣ABC正棱錐,∴SB⊥AC(對棱互相垂直)∴MN⊥AC
又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球.
∴側棱長為:2,
∴R= ,
∴正三棱錐外接球的體積是 =
.
所以答案是:B.
【考點精析】本題主要考查了直線與平面垂直的判定的相關知識點,需要掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】要得到函數y= sin2x+cos2x的圖象,只需將函數y=2sin2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x),g(x)滿足 f(x)g(x)dx=0,則f(x),g(x)為區間[﹣1,1]上的一組正交函數,給出三組函數: ①f(x)=sin
x,g(x)=cos
x;
②f(x)=x+1,g(x)=x﹣1;
③f(x)=x,g(x)=x2 ,
其中為區間[﹣1,1]上的正交函數的組數是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了培養學生的數學建模和應用能力,某校組織了一次實地測量活動,如圖,假設待測量的樹木AE的高度H(m),垂直放置的標桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三點共線),試根據上述測量方案,回答如下問題:
(1)若測得α=60°、β=30°,試求H的值;
(2)經過分析若干次測得的數據后,大家一致認為適當調整標桿到樹木的距離d(單位:m),使α與β之差較大時,可以提高測量精確度.
若樹木的實際高度為8m,試問d為多少時,α﹣β最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為
,過焦點垂直長軸的弦長為3.
(1)求橢圓的標準方程;
(2)過橢圓的右頂點作直線交拋物線y2=2x于A、B兩點,求證:OA⊥OB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設(x1 , y1),(x2 , y2),…,(xn , yn)是變量x和y的n個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結論中正確的是( )
A.x和y的相關系數在﹣1和0之間
B.x和y的相關系數為直線l的斜率
C.當n為偶數時,分布在l兩側的樣本點的個數一定相同
D.所有樣本點(xi , yi)(i=1,2,…,n)都在直線l上
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,且在(0,+∞)上是增函數,設a=f(﹣ ),b=f(log3
),c=f(
),則a、b、c的大小關系是( )
A.a<c<b
B.b<a<c
C.b<c<a
D.c<b<a
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com