精英家教網 > 高中數學 > 題目詳情
由坐標原點O向函數y=x3-3x2的圖象W引切線l1,切點為P1(x1,y1)(P1,O不重合),再由點P1引W的切線l2,切點為P2(x2,y2)(P1,P2不重合),…,如此繼續下去得到點列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿足的關系式;
(Ⅲ)求數列{xn}的通項公式.
分析:(Ⅰ)由y=x3-3x2,知y′=3x2-6x.再由切線l1的方程為y-(x13-3x12)=(3x12-6x1)(x-x1)過點O(0,0),知-(x13-3x12)=-x1(3x12-6x1),由此能求出x1的值.
(Ⅱ)由過點Pn+1(xn+1,yn+1)的切線ln+1的方程為y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1)過點Pn(xn,yn),知(xn-xn+12(xn+2xn+1-3)=0,由此能求出xn與xn+1滿足的關系式.
(Ⅲ)由xn+1=-
1
2
xn+
3
2
,知xn+1-1=-
1
2
(xn-1)

∴{xn-1}是以x1-1=
1
2
為首項,-
1
2
為公比的等比數列,由此能求出數列{xn}的通項公式.
解答:解:(Ⅰ)∵y=x3-3x2,∴y′=3x2-6x.
∵過點P1(x1,y1)的切線l1的方程為y-(x13-3x12)=(3x12-6x1)(x-x1),
又l1過點O(0,0),
∴-(x13-3x12)=-x1(3x12-6x1),
∴2x13=3x12,∴x1=
3
2
或x1=0.∵P1與O不重合,
x1=
3
2
.(5分)
(Ⅱ)∵過點Pn+1(xn+1,yn+1)的切線ln+1的方程為y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1),
又ln+1過點Pn(xn,yn),
∴xn3-3xn2-(xn+13-3xn+12)=(3xn+12-6xn+1)(xn-xn+1),
整理得(xn-xn+12(xn+2xn+1-3)=0,
由已知得xn≠xn+1,
∴xn+2xn+1=3.(10分)
(Ⅲ)∵xn+1=-
1
2
xn+
3
2
,
xn+1-1=-
1
2
(xn-1)
,
∴{xn-1}是以x1-1=
1
2
為首項,-
1
2
為公比的等比數列,
xn-1=
1
2
(-
1
2
)n-1
,
xn=1-(-
1
2
)n
.(14分)
點評:本題考查數列的性質和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源:北京市崇文區2006-2007學年度高三年級第一學期期末統一考試、數學文 題型:044

由坐標原點O向函數y=x3-3x2的圖象W引切線l1,切點為P1(x1,y1)(P1,O不重合),再由點P1的切線l2,切點為P2(x2,y2)(P1,P2不重合),如此繼續下去得到點列{Pn(xn,yn)}

(1)

求x1的值;

(2)

求xn與xn+1滿足的關系式;

(3)

求數列{xn}的通項公式

查看答案和解析>>

科目:高中數學 來源: 題型:

由坐標原點O向函數y=x3 -3x2的圖象W引切線l1,切點P1(x1,y1) (P1,O不重合),再由點P1引W的切線l2,切點為P2(x2,y2) (P1, P2不重合),…,如此繼續下去得到點列{Pn(xn,yn)}.

(1)求x1的值;

(2)求xnxn+1滿足的關系式;

(3)求的值。

查看答案和解析>>

科目:高中數學 來源:2006-2007學年北京市崇文區高三(上)期末數學試卷(文科)(解析版) 題型:解答題

由坐標原點O向函數y=x3-3x2的圖象W引切線l1,切點為P1(x1,y1)(P1,O不重合),再由點P1引W的切線l2,切點為P2(x2,y2)(P1,P2不重合),…,如此繼續下去得到點列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿足的關系式;
(Ⅲ)求數列{xn}的通項公式.

查看答案和解析>>

科目:高中數學 來源:2006-2007學年北京市崇文區高三(上)期末數學試卷(理科)(解析版) 題型:解答題

由坐標原點O向函數y=x3-3x2的圖象W引切線l1,切點為P1(x1,y1)(P1,O不重合),再由點P1引W的切線l2,切點為P2(x2,y2)(P1,P2不重合),…,如此繼續下去得到點列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿足的關系式;
(Ⅲ)求數列{xn}的通項公式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视