【題目】已知函數,其中
.
(Ⅰ)討論的單調性;
(Ⅱ)當時,證明:
;
(Ⅲ)求證:對任意正整數,都有
(其中
為自然對數的底數).
科目:高中數學 來源: 題型:
【題目】為迎接“五一”節的到來,某單位舉行“慶五一,展風采”的活動.現有6人參加其中的一個節目,該節目由兩個環節可供參加者選擇,為增加趣味性,該單位用電腦制作了一個選擇方案:按下電腦鍵盤“Enter”鍵則會出現模擬拋兩枚質地均勻骰子的畫面,若干秒后在屏幕上出現兩個點數
和
,并在屏幕的下方計算出
的值.現規定:每個人去按“Enter”鍵,當顯示出來的
小于
時則參加
環節,否則參加
環節.
(1)求這6人中恰有2人參加該節目環節的概率;
(2)用分別表示這6個人中去參加該節目
兩個環節的人數,記
,求隨機變量
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓x2+y2+2x-15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(1)證明|EA|+|EB|為定值,并寫出點E的軌跡方程;
(2)設點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某景區的各景點從2009年取消門票實行免費開放后,旅游的人數不斷地增加,不僅帶動了該市淡季的旅游,而且優化了旅游產業的結構,促進了該市旅游向“觀光、休閑、會展”三輪驅動的理想結構快速轉變.下表是從2009年至2018年,該景點的旅游人數(萬人)與年份
的數據:
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數 | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點為了預測2021年的旅游人數,建立了與
的兩個回歸模型:
模型①:由最小二乘法公式求得與
的線性回歸方程
;
模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.
(1)根據表中數據,求模型②的回歸方程.(
精確到個位,
精確到0.01).
(2)根據下列表中的數據,比較兩種模型的相關指數,并選擇擬合精度更高、更可靠的模型,預測2021年該景區的旅游人數(單位:萬人,精確到個位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數據及說明:
①對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計分別為
.②刻畫回歸效果的相關指數
;③參考數據:
,
.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年春節期間,我國高速公路繼續執行“節假日高速公路免費政策”某路橋公司為掌握春節期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數,統計發現這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區間,9:40~10:00記作
,10:00~10:20記作
,10:20~10:40記作
.例如:10點04分,記作時刻64.
(1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數據用該組區間的中點值代表);
(2)為了對數據進行分析,現采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設抽到的4輛車中,在9:20~10:00之間通過的車輛數為X,求X的分布列與數學期望;
(3)由大數據分析可知,車輛在每天通過該收費點的時刻T服從正態分布,其中
可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,
可用樣本的方差近似代替(同一組中的數據用該組區間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(結果保留到整數).
參考數據:若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設△ABC的內角A,B,C所對的邊長分別為a,b,c,且滿足a2+c2-b2=ac.
(1)求角B的大;
(2)若2bcos A=(ccosA+acosC),BC邊上的中線AM的長為
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若存在區間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數f(x)為“同域函數”,區間A為函數f(x)的一個“同域區間”.給出下列四個函數:
①;②f(x)=x2-1;③f(x)=|2x-1|;④f(x)=log2(x-1).
存在“同域區間”的“同域函數”的序號是__________.(請寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2ax-x2-3ln x,其中a∈R,為常數.
(1)若f(x)在x∈[1,+∞)上是減函數,求實數a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com