精英家教網 > 高中數學 > 題目詳情

【題目】某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失。

晉級成功

晉級失敗

合計

16

50

合計

(1)求圖中的值;

(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?

(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望

(參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

【答案】(1) ;(2)列聯表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3

【解析】

(1)由頻率和為1,列出方程求的值;

(2)由頻率分布直方圖求出晉級成功的頻率,計算晉級成功的人數,

填寫列聯表,計算觀測值,對照臨界值得出結論;

(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,

知隨機變量服從二項分布,計算對應的概率值,寫出分布列,計算數學期望.

解:(1)由頻率分布直方圖各小長方形面積總和為1,

可知,

解得;

(2)由頻率分布直方圖知,晉級成功的頻率為,

所以晉級成功的人數為(人),

填表如下:

晉級成功

晉級失敗

合計

16

34

50

9

41

50

合計

25

75

100

假設“晉級成功”與性別無關,

根據上表數據代入公式可得,

所以有超過的把握認為“晉級成功”與性別有關;

(3)由頻率分布直方圖知晉級失敗的頻率為,

將頻率視為概率,

則從本次考試的所有人員中,隨機抽取1人進行約談,這人晉級失敗的概率為0.75,

所以可視為服從二項分布,即,

,

,

,

,

.

所以的分布列為:

0

1

2

3

4

數學期望為.或().

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數是定義在R上的奇函數,當時,,給出下列命題:

①當時,;

②函數2個零點;

的解集為

,,都有.

其中真命題的個數為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,由4個點、組成了一個高為,面積為的等腰梯形.

1)求橢圓的方程;

2)過點的直線和橢圓交于兩點、,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】人們隨著生活水平的提高,健康意識逐步加強,健身開始走進人們生活,在健身方面投入越來越多,為了調查參與健身的年輕人一年健身的花費情況,研究人員在地區隨機抽取了參加健身的青年男性、女性各50名,將其花費統計情況如下表所示:

分組(花費)

頻數

6

22

25

35

8

4

男性

女性

合計

健身花費不超過2400

23

健身花費超過2400

20

合計

1)完善二聯表中的數據;

2)根據表中的數據情況,判斷是否有99%的把握認為健身的花費超過2400元與性別有關;

3)求這100名被調查者一年健身的平均花費(同一組數據用該區間的中點值代替).

附:

P(K2k)

0.10

0.05

0.025

0.01

k

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若對任意的實數k,b,函數與直線總相切,則稱函數為“恒切函數”.

1)判斷函數是否為“恒切函數”;

2)若函數是“恒切函數”,求實數m,n滿足的關系式;

3)若函數是“恒切函數”,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,已知直線l過點P2,2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρρcos2θ4cosθ0.

1)求C的直角坐標方程;

2)若lC交于A,B兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中, 分別是的中點.

(1)求證: 平面;

(2)若三棱柱的體積為4,求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中為自然對數的底數.

(1)當時,判斷函數的單調性;

(2)若直線是函數的切線,求實數的值;

(3)當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐中,點在以為直徑的圓上,平面平面,點在線段上,且,,,,點的重心,點的中點.

(1)求證:平面

(2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视