精英家教網 > 高中數學 > 題目詳情
給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數.以下四個函數在(0,
π
2
)
上不是凸函數的是( 。
A、f(x)=sinx+cosx
B、f(x)=lnx-2x
C、f(x)=-x3+2x-1
D、f(x)=-xe-x
分析:對ABCD分別求二次導數,逐一排除可得答案.
解答:解:對于f(x)=sinx+cosx,f′(x)=cosx-sinx,f″(x)=-sinx-cosx,當x∈(0,
π
2
)
時,f″(x)<0,故為凸函數,排除A;
對于f(x)=lnx-2x,f′(x)=
1
x
-2
,f″(x)=-
1
x2
,當x∈(0,
π
2
)
時,f″(x)<0,故為凸函數,排除B;
對于f(x)=-x3+2x-1,f′(x)=-3x2+2,f″(x)=-6x,當x∈(0,
π
2
)
時,f″(x)<0,故為凸函數,排除C;
故選D.
點評:本題主要考查函數的求導公式.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f′(x)=(f′(x))′.若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數.以下四個函數在(0,
π2
)上不是凸函數的是
 
.(把你認為正確的序號都填上)
①f(x)=sin x+cos x;
②f(x)=ln x-2x;
③f(x)=-x3+2x-1;
④f(x)=xex

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f″(x)=[(f′(x)]′.若f(x)>0在D上恒成立,則稱f(x)在D上為凹函數.以下四個函數在(0,
π
2
)
上不是 凹函數的是(  )
A、f(x)=1-sinx
B、f(x)=ex-2x
C、f(x)=x3-x2-1
D、f(x)=-xe-x

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f(x)=(f′(x))′,若f(x)<0在D上恒成立,則稱f(x)在D上為凸函數.對于給出的四個函數:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四個函數在(0,
π2
)
上是凸函數的是
①②③
①②③
(請把所有正確的序號均填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導函數,記f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,則稱f(x)在D上為上凸函數.以下四個函數在(0,
π
2
)
上不是上凸函數的是(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视