【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”問題,原文如下:有物不知數,三三數之剩二,五五數之剩三,問物幾何?即,一個整數除以三余二,除以五余三,求這個整數.設這個整數為
,當
時, 符合條件的
共有_____個.
科目:高中數學 來源: 題型:
【題目】據某氣象中心觀察和預測:發生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某果農從經過篩選(每個水果的大小最小不低于50克,最大不超過100克)的10000個水果中抽取出100個樣本進行統計,得到如下頻率分布表:
級別 | 大。ǹ耍 | 頻數 | 頻率 |
一級果 | 5 | 0.05 | |
二級果 | |||
三級果 | 35 | ||
四級果 | 30 | ||
五級果 | 20 | ||
合計 | 100 |
請根據頻率分布表中所提供的數據,解得下列問題:
(1)求的值,并完成頻率分布直方圖;
(2)若從四級果,五級果中按分層抽樣的方法抽取5個水果,并從中選出2個作為展品,求2個展品中僅有1個是四級果的概率;
(3)若將水果作分級銷售,預計銷售的價格元/個與每個水果的大小
克關系是:
,則預計10000個水果可收入多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A(a,0)、B(0,b)(其中ab≠0)O為坐標原點.
(1)動點P(x,y)滿足,求P點的軌跡方程;
(2)設是線段AB的n+1(n≥1)等分點,當n=2018時,求
的值;
(3)若a=b=1,t∈[0,1],求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某批發市場一服裝店試銷一種成本為每件元的服裝規定試銷期間銷售單價不低于成本單價,且獲利不得高于成本的
,經試銷發現銷售量
(件)與銷售單價
(元)符合一次函數
,且
時,
;
時,
.
(1)求一次函數的解析式,并指出
的取值范圍;
(2)若該服裝店獲得利潤為元,試寫出利潤
與銷售單價
之間的關系式;銷售單價
定為多少元時,可獲得最大利潤最大利潤是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知橢圓 過點
,離心率為
,左、右焦點分別為
、
,點
為直線
上且不在
軸上的任意一點,直線
和
與橢圓的交點分別為
、
和
、
,
為坐標原點.
(1)求橢圓的標準方程;
(2)設直線、
的斜線分別為
、
.
(i)證明:;
(ii)問直線上是否存在點
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點O的橢圓C經過點A(),且點F(
,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在直線與橢圓C交于B,D兩點,滿足,且原點到直線l的距離為
?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
,把圓
上每一點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線
,且傾斜角為
,經過點
的直線
與曲線
交于
兩點.
(1)當時,求曲線
的普通方程與直線
的參數方程;
(2)求點到
兩點的距離之積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com