【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求證:a,b,c成等比數列;
(2)若a=1,c=2,求△ABC的面積S.
【答案】
(1)證明:∵sinB(tanA+tanC)=tanAtanC
∴sinB( )=
∴sinB =
∴sinB(sinAcosC+sinCcosA)=sinAsinc
∴sinBsin(A+C)=sinAsinC,
∵A+B+C=π
∴sin(A+C)=sinB
即sin2B=sinAsinC,
由正弦定理可得:b2=ac,
所以a,b,c成等比數列.
(2)解:若a=1,c=2,則b2=ac=2,
∴ ,
∵0<B<π
∴sinB=
∴△ABC的面積
【解析】(1)由已知,利用三角函數的切化弦的原則可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用兩角和的正弦公式及三角形的內角和公式代入可得sin2B=sinAsinC,由正弦定理可證(2)由已知結合余弦定理可求cosB,利用同角平方關系可求sinB,代入三角形的面積公式S= 可求.
【考點精析】認真審題,首先需要了解等比數列的基本性質({an}為等比數列,則下標成等差數列的對應項成等比數列;{an}既是等差數列又是等比數列== {an}是各項不為零的常數列).
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
是
的中點,
是等腰三角形,
為
的中點,
為
上一點.
(I)若平面
,求
;
(II)平面將三棱柱
分成兩個部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月,華中地區數城市空氣污染指數“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;(提示數據:
)
(2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度;(II)規定:當一天內
的濃度平均值在
內,空氣質量等級為優;當一天內
的濃度平均值在
內,空氣質量等級為良,為使該市某日空氣質量為優或者為良,則應控制當天車流量不超過多少萬輛?(結果以萬輛為單位,保留整數)參考公式:回歸直線的方程是
,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數分別記為,
.
(1)求直線與圓
相切的概率;
(2)將,
,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com