精英家教網 > 高中數學 > 題目詳情

已知
(1)求當時,函數的表達式;
(2)作出函數的圖象,并指出其單調區間。

(1)(2)單調減區間為:;單調增區間為:  

解析試題分析:解:(1)設

又因為為偶函數,
所以(1)可以化為:
即:當時,函數的表達式是   
(2)單調減區間為:
單調增區間為:   

考點:函數的解析式;函數的單調區間
點評:求函數的單調區間,關鍵是看一個函數在一個區間內是增函數還是減函數,若函數在這個區間內是增函數,則這個區間是增區間;若函數在這個區間內是減函數,則這個區間是減區間;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,,其中R.
(1)討論的單調性;
(2)若在其定義域內為增函數,求正實數的取值范圍;
(3)設函數,當時,若,,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,證明:
(Ⅰ)對每個,存在唯一的,滿足;
(Ⅱ)對任意,由(Ⅰ)中構成的數列滿足.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在點處的切線方程為,且對任意的恒成立.
(Ⅰ)求函數的解析式;
(Ⅱ)求實數的最小值;
(Ⅲ)求證:).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,函數,其中是自然對數的底數。
(1)判斷在R上的單調性;
(2)當時,求上的最值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若曲線在點處與直線相切,求的值;
(2)求函數的單調區間與極值點.
(3)設函數的導函數是,當時求證:對任意成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)=log)為奇函數,a為常數.
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(1,+∞)內單調遞增;
(Ⅲ)若對于[3,4]上的每一個的值,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.設關于x的不等式的解集為且方程的兩實根為.
(1)若,求的關系式;
(2)若,求的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為常數,設為自然對數的底數.
(1)當時,求的最大值;
(2)若在區間上的最大值為,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视