科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓
:
的離心率
,且橢圓C上一點
到點Q
的距離最大值為4,過點
的直線交橢圓
于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當
時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
曲線C上任一點到定點(0,)的距離等于它到定直線
的距離.
(1)求曲線C的方程;
(2)經過P(1,2)作兩條不與坐標軸垂直的直線分別交曲線C于A、B兩點,且
⊥
,設M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標和這條定直線的方程.若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的左焦點為F, 離心率為
, 過點F且與x軸垂直的直線被橢圓截得的線段長為
.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓
的中心在原點
,焦點在
軸上,短軸長為
,離心率為
.
(I)求橢圓的方程;
(II) 為橢圓
上滿足
的面積為
的任意兩點,
為線段
的中點,射線
交橢圓
與點
,設
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
過拋物線的焦點F作斜率分別為
的兩條不同的直線
,且
,
相交于點A,B,
相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為
。
(I)若,證明;
;
(II)若點M到直線的距離的最小值為
,求拋物線E的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線的焦點在拋物線
上.
(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過拋物線上的動點
作拋物線
的兩條切線
、
, 切點為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓:
的右焦點為
且
為常數,離心率為
,過焦點
、傾斜角為
的直線
交橢圓
與M,N兩點,
(1)求橢圓的標準方程;
(2)當=
時,
=
,求實數
的值;
(3)試問的值是否與直線
的傾斜角
的大小無關,并證明你的結論
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com