D
分析:①令x=-3,代入f(x+6)=f(x)+f(3),根據函數為偶函數,得到f(3)=0;
②將f(3)=0代入,得到f(x+6)=f(x),故f(x)是周期等于6的周期函數,再由f(x)是偶函數可得,x=-6是函數y=f(x)的圖象的一條對稱軸;
③根據偶函數f(x)在[0,3]上為增函數,且周期為6得到函數y=f(x)在[-9,-6]上為減函數;
④根據f(3)=0,周期為6,得到f(-9)=f(-3)=f(3)=f(9)=0,有四個零點.
解答:①令x=-3,則由f(x+6)=f(x)+f(3),函數y=f (x)在R上是偶函數,得f(3)=f(-3)+f(3)=2f(3),故f(3)=0,故①正確.
②由f(3)=0,可得:f(x+6)=f(x),故f(x)是周期等于6的周期函數.
由于f(x)為偶函數,y軸是對稱軸,故直線x=-6也是函數y=f(x)的圖象的一條對稱軸,故②正確.
③因為當x
1,x
2∈[0,3],x
1≠x
2時,有

成立,故f(x)在[0,3]上為增函數,
又f(x)為偶函數,故在[-3,0]上為減函數,又周期為6.故在[-9,-6]上為減函數,故③錯誤.
④函數f(x)周期為6,故f(-9)=f(-3)=f(3)=f(9)=0,故y=f(x)在[-9,9]上有四個零點,故④正確.
故選 D.
點評:本題考查了抽象函數的單調性,奇偶性,周期性,綜合性比較強,需熟練靈活掌握,屬于基礎題.