精英家教網 > 高中數學 > 題目詳情
(2010•溫州一模)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為
25

(I)求n;
(II)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數學期望Eξ.
分析:(I)由于每個球被摸到的機會是均等的,故可用古典概型的概率公式解答.
(II)ξ為相鄰兩次摸出的球不同色的次數,則隨機變量ξ的取值為0,1,2,利用古典概型的概率公式求出相應的概率,進而可得ξ的分布列及其數學期望Eξ.
解答:解:(I)由條件可知
C
2
n
C
2
n+2
=
2
5
,….(3分)
解得n=4(負值舍去)…..(5分)
(II)隨機變量ξ的取值為0,1,2…..(6分)
ξ的分布列為
ξ 0 1 2
P
1
5
8
15

4
15
.…(12分)
所以ξ的數學期望為Eξ=0×
1
5
+1×
8
15
+2×
4
15
=
16
15
 ….(14分)
點評:本題主要考查了隨機事件概率的求法,同時考查了離散型隨機變量的概率分布列及數學期望.解題時應掌握如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=
m
n
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•溫州一模)已知y=f(x)是奇函數,當x>0時,f(x)=4x則f(-
12
)=
-2
-2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•溫州一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,為DB的中點,
(Ⅰ)證明:AE⊥BC;
(Ⅱ)線段BC上是否存在一點F使得PF與面DBC所成的角為60°,若存在,試確定點F的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•溫州一模)已知a,b是實數,則“a=1且b=1”是“a+b=2”的(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•溫州一模)已知α∈(
π
2
,π),sinα=
3
5
,則sin2α等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•溫州一模)已知B1,B2為橢圓C1
x2
a2
+y2=1(a>1)
短軸的兩個端點,F為橢圓的一個焦點,△B1FB2為正三角形,
(I)求橢圓C1的方程;
(II)設點P在拋物線C2:y=
x2
4
-1
上,C2在點P處的切線與橢圓C1交于A、C兩點,若點P是線段AC的中點,求AC的直線方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视