(本小題滿分12分)
已知直線:
和橢圓
,橢圓C的離心率為
,連結橢圓的四個頂點形成四邊形的面積為
.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個不同的交點,求實數m的取值范圍;
(3)當時,設直線
與y軸的交點為P,M為橢圓C上的動點,求線段PM長度的最大值.
(1);(2)
;(3)|
|取得最大值
.
解析試題分析:本題主要考查橢圓的標準方程、直線與橢圓的相交問題、兩點間的距離公式、配方法求函數最值等基礎知識,考查學生的分析問題解決問題的能力、計算能力.第一問,利用橢圓的標準方程,利用離心率求出基本量a和b,從而得到橢圓的標準方程;第二問,直線與橢圓方程聯立,消參,由于直線與橢圓交于2個點,所以消參后的方程的判別式大于0,解不等式求出m的取值范圍;第三問,將m=2代入,直接得到直線的方程,從而得到p點坐標,設出p點坐標,則利用兩點間距離公式可求出
,利用點M在橢圓上,轉化x,通過配方法求函數的最值.
(1)由離心率,得
又因為,所以
,
即橢圓標準方程為. 4分
(2)由 消
得:
.
所以, 可化為
解得. 8分
(3)由l:,設
, 則
, 所以
9分
設滿足
,
則|
因為 , 所以 11分
當時,|
|取得最大值
. 12分
考點:橢圓的標準方程、直線與橢圓的相交問題、兩點間的距離公式、配方法求函數最值.
科目:高中數學 來源: 題型:解答題
如圖,設橢圓的左、右焦點分別為
,點
在橢圓上,
,
,
的面積為
.
(1)求該橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在
軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設動點P滿足:=
+2
,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣
,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是拋物線為
上的一點,以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點,連結并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左右焦點分別為
,點
為短軸的一個端點,
.
(1)求橢圓的方程;
(2)如圖,過右焦點,且斜率為
的直線
與橢圓
相交于
兩點,
為橢圓的右頂點,直線
分別交直線
于點
,線段
的中點為
,記直線
的斜率為
.
求證: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C:離心率是
,過點
,且右支上的弦
過右焦點
.
(1)求雙曲線C的方程;
(2)求弦的中點
的軌跡E的方程;
(3)是否存在以為直徑的圓過原點O?,若存在,求出直線
的斜率k 的值.若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線="1"
的兩個焦點為
、
,P是雙曲線上的一點,
且滿足 ,
(1)求的值;
(2)拋物線的焦點F與該雙曲線的右頂點重合,斜率為1的直線經過點F與該拋物線交于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓,過點
且離心率為
.
(1)求橢圓的方程;
(2)已知是橢圓
的左右頂點,動點M滿足
,連接AM交橢圓于點P,在x軸上是否存在異于A、B的定點Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013•浙江)如圖,點P(0,﹣1)是橢圓C1:+
=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com