已知α∈R,sin α+2cos α=,則tan 2α等于( ).
A. B.
C.-
D.-
科目:高中數學 來源:2014年高考數學(理)二輪復習專題能力測評3練習卷(解析版) 題型:選擇題
在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是( ).
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練9練習卷(解析版) 題型:解答題
已知數列{an}是首項為,公比為
的等比數列,設bn+15log3an=t,常數t∈N*.
(1)求證:{bn}為等差數列;
(2)設數列{cn}滿足cn=anbn,是否存在正整數k,使ck,ck+1,ck+2按某種次序排列后成等比數列?若存在,求k,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練8練習卷(解析版) 題型:選擇題
已知非零向量a,b,c滿足a+b+c=0,向量a與b的夾角為60°,且|a|=|b|=1,則向量a與c的夾角為( ).
A.30° B.60° C.120° D.150°
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練7練習卷(解析版) 題型:填空題
如圖,嵩山上原有一條筆直的山路BC,現在又新架設了一條索道AC,小李在山腳B處看索道AC,發現張角∠ABC=120°;從B處攀登400米到達D處,回頭看索道AC,發現張角∠ADC=150°;從D處再攀登800米方到達C處,則索道AC的長為______米.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練18練習卷(解析版) 題型:解答題
某商場為吸引顧客消費推出一項促銷活動,促銷規則如下:到該商場購物消費滿100元就可轉動如圖所示的轉盤一次,進行抽獎(轉盤為十二等分的圓盤),滿200元轉兩次,以此類推;在轉動過程中,假定指針停在轉盤的任一位置都是等可能的;若轉盤的指針落在A區域,則顧客中一等獎,獲得10元獎金;若轉盤落在B區域或C區域,則顧客中二等獎,獲得5元獎金;若轉盤指針落在其他區域,則不中獎(若指針停到兩區間的實線處,則重新轉動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規則參與了促銷活動.
(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數,求X的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練18練習卷(解析版) 題型:選擇題
已知隨機變量X~N(1,4)且P(X<2)=0.72,則P(1<X<2)等于( ).
A.0.36 B.0.16 C.0.22 D.0.28
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練16練習卷(解析版) 題型:填空題
已知點F是雙曲線=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,M是PD的中點,AB=2,∠BAD=60°.
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC;
(3)當四棱錐P-ABCD的體積等于時,求PB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com